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1 Introduction
in network design it is a fundamental problem to construct graphs or subgraphs of a
graph of minimurm cost satisfying certain connactivity specifictic
Shortest paths between two specified nodes, or minimum cost spanning trees
may he viewed as (weil-known) special cases of this problem. Very often a starting
graph is already available and the goal is to augment the graph. For example, at least
how many new edges must be added to a digraph to make it strongly connected?
Having such a broad class of problems {already a special case, the well-known
Steiner-tree problem, has a vast literature), it is of no surprise that a large number
of connectivity augmentation problems are NP-complete. But there are interesting
special cases, as well, for which polynomial time algorithms are available. Investi-
gations and results of this problem may be categorized into three main directions.

One is concerned with heuristics, often based on deep thearetical background such -

as the polyhedral method, that work well in practice. An excellent survey paper by
M. Grétschel, C. L. Monma and M. Stoer [30] surmmarizes this type of results. An-
other line is to develop approximation algorithms whose running time is polynomial
and the output is provably not much worse than the optimum. In a recent Ph.D. the-
sis, D. P. Williamson [67] provides a rich class of problems of this type along with
approximation algorithms for their solution.

The purpose of the present paper isto survey connectivity augmentation problems
for which an algaorithm is available to find the exact optimum in {strongly) polynomial
time. Though polynomially solvable problems are often too restricted to be used
directly in practical applications, they may serve well as building blocks in a more
complex procedure. In many cases, such as the k-edge-connectivity augmentation
problem on digraphs, the proposed algorithm is purely combinatorial and strongly
polynomial.

Such algorithms have the feature (as opposed to the ellipsoid method, say) that
they can bé run in practice and used for large graphs. In some other cases, such as the
k-node-connectivity augmentation problem on digraphs, a theoretical background
has been developed which, at least, ensures a polynomial-time algorithm via the
ellipsoid method. But such methods might never be used in practice. Their existence
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should be considered merely as a challenge to design purely combinatorial sotution
algorithms. Also, these algorithms are important from a theoretical point of view
in order to explore the horderline (if there is any) between NP-completeness and
polynomial solvability.

We will use two basic measurements for connectivity. Given a directed or undi-
rected graph G, Mz, y) = A(z, y; G) (respectively, x(z,y) = x{z,y; G)) denotes the
maximum number of edge-disjoint {openly disjoint} paths frem x to . K. Menger’s
classical theorem asserts that in an undirected graph if z and y are not adjacent, then
#(z,y) is equal to the minimum number of nodes whose deletion separates x m:.a
y. Other versions of Menger’s theocrem provide min-max formulae for x and A in
directed and in undirected graphs. For example, in a digraph A{z, y) is equal to the
minimum number of edges leaving an ri-subset of nodes. {Aset X is called an z§j-set
ifz € X,y & X.) This is an equivalent formulation of the max-flow Bm:-m._._ﬁ theorem.
(M(z, y) may be considered as the maximum flow value from z to y provided that the
capacity of each edge is 1.)

An undirected graph G is called k-edge-connected if every cut has at least k edges.
When & = 1 we simply say G is connected. A digraph D is called k-edge-connected if
every (non-empty, proper) subset of nodes has at least k exiting edges. When k =1
we call D strongly connected. By Menger’s theorem a digraph or an undirected graph
is k-edge-connected if and only if there are k edge-disjoint paths from every node to
every other one.

The general form of the augmentation problems we investigate is as follows.
Given a directed or undirected graph G = (V, E) and a non-negative integer function
r{z,y) on the set of ordered pairs of nodes, serving as a demand function, add a
minimum number of new edges to G {or, more generally, a minimum cost set of new
edges, if a cost-function is given on the set of possible new edges) so that

Mz, y; G = r(z,y) (1.1}
or
k(z,y;Gt) 2 r(z,y) {1.1b)

holds for every pair of nodes x, y of the resulting graph (digraph} Gt. Accordingly,
we may speak about edge-connectivity augmentation problem or node-connectivity
augmentation problem.

Beside these minimization forms, we will consider degree-constrained augmen-
tation problems, as well, where a lower and upper bound is given at every node v for
the number of new edges incident to v.

A natural relaxation of the augmentation problem is the max flow version. Sup-
pose that g(u, v} is a non-negative capacity function on the pairs of nodes u, v (u,v €
V) and let r(u,v) be a demand function. The problem is to increase the existing
capacities so that in the resulting network the maximum flow value between u and
v is at least r(u, v) for each pair {u,v} of nodes and such that the sum of capacity
increments is minimum.
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it g(u,v) and r(u,v) are integer-valued and the capacity increments are also re-
quired to be integer-valued, then the edge-connectivity augmentation problem is
equivalent to the max-flow version. Namely, the Jatter problem can be formulated as
a max-flow version by tetting g(u, v) = 1 when (u,v) is an edge of G and glu,v) =0
otherwise. Conversely, if g is integer-valued, we can define a graph having g(u,v)
parallel edges between each pair of nodes u and v and then a solution to the edge-
connectivity problem vields a solution to the integer-valued max-flow probiem.

This equivalence, however, does not mean algorithmic equivalence. We are ao-
ing to exhibit strongly polynomial time algorithms for the more difficult max-flow
augmentation problem. (A polynomial time algorithm is called strongly polynomial
if it uses only basic operations, such as comparing, adding, subtracting, multiplying,
and dividing numbers, and the number of these operations is independent of the
numbers occurring in the input.)

We will also investigate the question of when the fractional augmentation allows
better solution than the integer-valued one. For example, fet'V-be a set of nodes,
g=0andr = 1. Ifonly integers are allowed for the increments, then the value of the
best solution is n — 1: take any tree on V' and increase the capacity of its edges by
one. If we may use fractional increments, then the value of the best solution is n/2:
take any circuit of n nodes, increase the capacity of its edges by 1/2.

On the other hand, we will see problems {concerning mainly undirected graphs)
when the optimum of the integer-valued solution is at most one half bigger than that
of the fractional solution, and problems {especially when G is directed) when there
is an optimal solution to the max-flow augmentation problem that is integer-valued.

Given two elements s,t and a subset X of a ground-set I/, we say that X is an
st-setifs € X,t ¢ X. X separates s from ¢ {or z and Hif[X N {s,t} = 1. A family
{X1,...,X,} of pairwise disjoint, non-empty subsets of U is called a sub-partition.

Let G = (U, E) an undirected graph. d (X, Y') denotes the number of undirected
edges between X — ¥ and Y — X. dg(X,Y) = de(X,U — Y)(= de(U - X, Y)).
dg(X) stands for d (X, U — X). Observe that dg (X, Y) = dg(U — X, U — Y). When
it does not cause ambiguity, we leave out the subscript.

For a directed graph D = (U, A) pp(X) denotes the number of edges entering
X, ép(X) := ¢p(U - X) and Op(X) = min{op{X),8p(X)). Note that Bp(X) =
Bo(U — X). dp(X,Y) denotes the number of edges with one end in X — ¥ and one
endinY - X. dp(X,Y) :=dp(X,U -~ Y){=dp{U - X,Y). An arborescence F'is a
directed tree in which every node but one has in-degree 1 and the exceptional node,
called the root, is of in-degree 0. (Equivalently, there is a directed path from the root
to every other node of F.)

Let Mf = (U, AU E) be a mixed graph composed as the union of a directed gaph
D = (U, A) and an undirected graph G = (U,E). Let op(X) := gp(X) + da(X),
(X)) '€ Sp(X) + de(X), and p(X) = min{gar (X),6m(X)). We say that a
node v of a M is di-Eulerian if o5 (v) = §p(v). M is called di-Eulerian if every node
of M is di-Eulerian,

Splitting off a pair of edges e = us, f = st means that we replace ¢ and f by
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a new edge ut. The resulting mixed graph will be denoted by .E&. This operation
is defined only if both e and f are undirected {respectively, Q:mﬁm& and then :._w
newly added edge ut is considered undirected (directed}. Accordingly, we speak o

undirected or directed splittings. .
For a function m. : V — R we use the notation m(X) 1= (m{v) : v € X). Fora

number z, let xt :== max(z, 0).

2 Subgraphs versus Supergraphs .

To clarify a simple link between optimal subgraphs and oE_Em._ wcﬁmqmqmndm. we mm_mz
with a specific problem. We are given a digraph I = (V, A) with ﬁ.s._o mumn_m_ma nodes
s and ¢. One of the simplest connectivity property one may consider in Dis

A, t) > 1, (2.1)

that Is, there is a path from s to t. It is well-known that (2.1) holds if and only if every
{- iting edge. . .
o mﬂ::mm.”.. Mwmq.dhx:o_%m. owm may consider the shortest path problem, a mnm:,:.@.uo_ﬁ
of combinaterial optimization, that consists of finding a path from .m to t of ,:..__.._BCW_U,:
cost with respect to a given cost function c on E. mc_‘. :o:-:wm.m:e.m ¢, this _M.m< ”
considered as a SUBGRAPH problem: given a ammquz.. find a minimum oom...ﬁ mcﬂ M«%UNV
satisfying (2.1). Dijkstra’s classical algorithm for finding a shortest paths is o n
noznw—_ww_m_omw not hold, then a natural task is to augment optimalty U m.o asto .mm:m?:
{2.1}. Augmentation may be considered as a mc_ummmmb_u_._ U_”ou_ma. o_,m_m: .mm_mq.w%mﬁ
D and a digraph H = (V, F) of possible new edges which is m:no,..a.m | s..:m “_v
function ¢, in D + H construct a minimum cost supergraph of U wm:m?.:@.ﬁ ) "
This augmentation problem may be solved by .m m:onmmm path oo_,:_ucﬁmﬂo: in ” ow
digraph D + H where the cost of the edges of H is determined by ¢ and the cos
riginal edges is defined to be 0. .
e ._m_:mw easy %qm:omn_m may be applied to properties other than (2.1). If one ._m able
to solve the minimum cost subgraph problem, one can solve the noqmm_oo:a_:on”:-
pergraph (that is, the augmentation) problem, as <.<m__. .mmm_os, we list mo:_m_m nﬂ mw
connectivity properties when the subgraph problem is efficiently mo_<mU_m.m: , mﬂw
fore, so is the augmentation problem. But we already hasten 8. emphasize gmw” e
focus of this paper wiil be on polynomially mo_<m~_u_m augmentation problems where
nding subgraph problem is NP-complete.
e wwoq”uwmhmmw in Ma_mqwu:uﬁoﬂ which the minimum cost mcum_.qmv: problem {and :.6_
minimum cost augmentation problem, as well) is solvable in strongly polynomia

time are:

(2.3)
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A(s,z) > k forevery z ¢ V, and . (2.4)
k(s,z) > k forevery z € V. {2.5)

The minimum cost subgraph problem with respect to (2.2) is equivalent to finding
min-cost flow of value k [62]. By an easy elementary construction, observed already
in [12], (2.3} goes back to (2.2}.

Finding @ minimum cost subgraph satisfying (2.4) is trickier. First, we may assume
that no edge of [J enters s. Since the cost function is supposed to be non-negative,
it is enough to consider digraphs satisfying (2.4) which are minimal with respect to
edge-deletion. The main observation is that such digraphs are precisely those in
which (a) the in-degree of every node v # s is precisely k and (b} the underlining
undirected graph is the union of k disjoint spanning trees. {The equivalence may be
proved by Edmonds’ [7] arborescence theorem) By this mnc,?,m._mi formulation the
problem is to find a minimum cost common basis of two matroids M, and M, defined
on the edge-set of D. Here A, is a partition matroid in which a set is indeperident if
it contains at most k edges entering any node v # 5. My is defined to be the sum of
k copies of the circuit matroid of the underlining undirected graph (that is, a subset
of edges of D is independent in M; if it is the union of k forests).

Since there are strongly polynomial algorithms for the weighted matroid inter-
section probiem [9, 15] the minimum cost subgraph problem with respect to (2.4} is
also solvable. By exploiting the particular structure of the two matroids in question,
H. Gabow [27] developed a mare efficient algorithm.

Note that the special case of (2.4) when & = 1 is tantamount to finding a minimum
cost arborescence of root s, for which D.R. Fulkerson [25] described a particularly
elegant algorithm.

No elementary reduction of Property (2.5) to (2.4) is known. A solution to the
subgraph minimization problem with respect to (2.5) was described in [22]. Itused a
tricky reduction to submodular flows [10], a common generalization of network flows
and matroid intersection. Here we do not repeat the reduction but provide a min-max
theorem concerning the corresponding augmentation proeblem, which is deducible
from the theory of submodular flows but was not explicitly stated in [22].

Let us call a digraph satisfying (2.5) k-out-connected [from s). Let D = (V, E) be
a digraph with a specified node s and assume our task is to augment I} to obtain a
k-out-connected digraph. Let if = (V, F) denote the digraph of possible new edges
andc: F — R, acostfunction. In order to have a solution at all we assume that the
union graph D + H is k-out-connected.

Let 7 denote the family of pairs (A, B) of two non-empty disjoint subsets of nodes
so that 5 '€ A. For a pair (A, B) let 8(A, B) := §p(A, B) denote the number of edges
of D from A to B. By a version of Menger's theorem a digraph is k-out-connected
from sifandonly if |V - (AUB)| +6(A, B) > k. Define the deficiency pg. s (A, B) of a
pair (A, B) by k — |V — (AU B)| + 6( A, B)) when this number is positive and by zero
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otherwise. Clearly, adding a subset X of edges of H to D Sm_n_.m a k-out-connected
digraph if and only if there are at least p(A, B) edges in X going from A to B for
every pair {A, B} € F.

Theorem 2.1 The minimum cost of edges of H whose addition to ) resuits in a
digraph which is k-out-connected from s is equal to max(3_ y(A, B)p(A, vav where
y > 0 is such that, for every edge xy € F, YJ(y(A,B) : x € A,y € B) < c(xy).
Mareover, if ¢ is integer-valued, y may be chosen integer-valued.

Actually, this theorem asserts that a certain linear program is totally dual integral. It
turns out that the theorem can be stated in a more abstract form. Let H = (v, ﬁu.vm
a directed graph endowed with a cost functionc : F — m and a omumm_z E:n:o:q
g: F — Z,. Let p be a non-negative mzﬁmmm_.&m_cmn. function on 25. pairs {4, B) o

.&mwo:; subsets of V. We say that p is intersecting bi-supermodular if

pX,Y)+p(X, Y <pXn X, YUY ) +p(XUX, Y NY') (2.6}
7
holds whenever p{ X, Y ), p(X’.Y') > 0, Y NnY' £ 0.
For a vector z defined on the edge-set F let §,(A,B) := 3 (z(uv) 1uv € Fu €

A, v e B).

Theorem 2.2 Letg: F — Z, beaninteger-valued capacity function so thaté,( A, B)
= p(A, B) for avery pair (A, B). Then the linear program

min(ez : 0 < z < g,6:(A, B) > p(A, B) for every disjoint A, B) {2.7)

is totally dual integral. In particular, (2.7) has an h.:ummm?cm..cma. optimum and if ._.n
addition c is integer-valued, the dual linear program also has an integer-valued opti-

mum.

{This theorem may be proved by using the standard uncrossing nmn::.mm_:m as was
done in [13, 18] for the special special case when p(A, B) may be positive only on
complementary pairs lie. AUB =V} .
Note that the role of the two variables of pis not symmetric. It becomes m<:,_.3m..:_n
if {2.6) is required only when p(X, Y}, p(X",¥") > 0, X N X', Y NY' # 0. In A:_.w case
p is called crossing bi-supermodular. Theorem 2.2 is no 308. true for crossing bi-
supermodular functions. But in Section 4 we will prove that a 3_:..3mx theorem does
hold when H is a complete directed graph {i.e. each of the possible n{n — 1) mnm.mm
belong to H) and ¢ = 1. Such a result will allow us to sclve the node-connectivity
augmentation problem in directed graph when arbitrary edges may be added.

3 Edge-Connectivity Augmentation of Digraphs
In the previous section we have seen that the minimum cost subgraph uqoc_.m:f and
therefore the minimum cost augmentation problem, is tractable for properties (2,1}

and (2.2).
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The next natural property to be investigated is strong connectivity. The minimum
cost subgraph problem reads: find a minimum cost strongly connected spanning sub-
graph of a given digraph. This is NP-complete even if the cost function is identically
1 since if one is able to find a strongly connected subgraph of minimum cardinality,
then one is able to decide if a digraph contains a strongly connected subgraph of car-
dinality n {the number of nodes) and this latter property is eguivalent for a digraph
to have a Hamiltonian circuit.

The corresponding augmentation problem asks, given a digraph D = (V| E)
and another digraph H = (V, F') {endowed with a non-negative cost-function e}, for
the minimum cost of edges of  whose addition to D creates a strongly connected
digraph.

A similar argument shows that the augmentation probiem is alsc NP-complete,
even for ¢ = 1, if no restriction is mada for H. One interesting restriction is when
there is a path in D from v to u for each edge uv of H. (For example, when H arises
from D by re-orienting each edge.} For the cardinality case, a thgorem of Lucchesi
and Younger [43] asserts in the present context that the minimum cardinality of new
edges of H to be added to D to provide a strongly connected digraph is equal to the
maximum number of H -independent source-sets of D. ( A proper non-empty subset
X of V is called a source-set if no edge of D enters X and a farmily of source-sets
is H-independent if no edge of H enters more than one of them. For later purposes
we define sink-sets as the complement of source-sets). The theory of submodular
functions (established in {10) extends this thearem to the weighted case. In [14] a
strongly polynomial time algorithm was developed to find the minimum in question.

The augmentation problem for strong connectivity was solved by K.P. Eswaran
and R.E. Tarjan [11] in the case when any possible new edge is allowed to be added
and ¢ = 1. In a digraph the sink-sets are closed under taking intersection and union.
Hence the minimal sink-sets (with respect to containment) are pairwise disfoint. Let
p1 denote their number. Similarly, the minimal source-sets are pairwise disjoint. Let
P2 denote their number. Since in a strongly connected digraph there are no source-
sets and sink-sets, at least max(p;, p2) new edges must be added. The next theorem
asserts that this bound is achievable. Note that it is not difficult to calculate 1 lor pa)
since p; is the number of sink-nodes (nodes with no leaving edges) of the digraph
arising from D by contracting each strong component into one node.

Theorem 3.1 (K.P. Eswaran and R.E. Tarjan [11]} Given a directed graph D = (V| E)
the minimum number of new edges whose addition to D creates a strongly connected
digraph is max(p;, p2).

The proof of Eswaran and Tarjan is constructive and gives rise to a linear-time algo-
rithm.

As we mentioned before, the minimum cost version of the problemis NP-complete.
However, the minimum node-cost augmentation problem is sclvable as will be shown
in a more general context.

In order to generalize the cardinality case of the strong connectivity augmentation
problem, suppose that a subset T of nodes is specified in a digraph D = (V, E) and
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our purpose is to add a minimum number of new edges so that every element of ma
be reachable from every other element of T. It is not difficult to see [18, 19] that this
problem is NP-complete. We will show, however, leven in a more mm:m.qm_ context)
that this problem is sclvable in polynomial time if the new edges are required to have
both end-nodes in T, -

Let us turn to this general case when we requiire w-mamm-no_._:mn:,.:s\ far the aug-
mented digraph, that is the demand function r(u,v) = k. The directed k-edge-
connectivity augmentation problem was solved by D.R. Fulkerson and _.“.m. m.:mu-
ley [26] when the starting digraph D = (V,8) has no edges at all, by V. Kajitani and
S. Ueno [1986) when the starting digraph is a directed tree and by Tm:x._._m_.*oq.m:
arbitrary starting digraph. The major idea that led to the solution to the .3_:_3_5:0:
problem came from the recognition that degree-prescribed augmentation problems
serve as useful intermediate problems. . .

Let D = (V, E) be a digraph and m,,m; : V — Z4 two integer-valued functions
so that m,(V) = m(V).

Theorem 3.2 A directed graph D = (V,E) can be made k-edge-connected by
adding a set F' of new edges satisfying

er(v) = m;(v) and §p(v) = mo(v) (3.1

for every node v € V if and only if both
o(X)+m(X) > kand§(X) + me(X) = k
hold for every X C V.

(3.2}

Note that F' may contain parallet edges or even loops. Itis an important open problem
to find characterizations for the existence of an F' without loops and parallel edges.
To get rid of the loops is at least easy (see, Corollary 3.6). .

A crucial observation is that Theorem 3.2 is nothing but a re-formulation of W.

Mader’s directed splitting off theorem:

Theorem 3.3 (Mader{46]) Let D = (V + 5, A) be a directed mﬁmtr.ﬁoﬁ which E.& =
8(s) and (*} A(z,y) 2 k for every x,y € V. Then the edges entering and leaving s
can be partitioned into o{s) pairs so that splitting off all these pairs leaves a k-edge-

connected digraph.

To derive Theorem 3.2, extend D by a new node s and for each v € V adjoin m,(v)
{respectively, m,{v)) parallel edges from s to v {from v to s). Now U.< {3.2) the hy-
potheses of Theorem 3.3 are satisfied and hence we can split off v pairs of mammm. to
obtain a k-edge-connected digraph. The resulting set of -y new edges (connecting
original nodes) satisfies the requirement. .
Mader stated his theorem in the form that there is a pair of edges, entering and
leaving s, which is splittable in the sense that their splitting off does not destroy
{(*). Since o(s) = &{(s), by repeated applications of ,Zm. one gets ._.:mc.BB 33. .>.:
example {in which p{s) == 1, 8{s) = 2} shows that the existence of a splittable pair is
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not necessarily true without the assumption e(s) = 6(s). As a slight generalization
of Mader’s theorem | can prove that there is a splittable pair if e(s} < 6(s) < 2o(s)
but I do not know any application of this result.

_ in 119, 18] the following characterization was derived for the minimization prob-
em.

.E.o..:.o:. 3.4 A directed graph D = (V,E) can be made k-edge-connected by
adding at most y new edges if and only if

M; ~ (X)) S yand Y (k- 8(X)) < (2.3)

holds for every sub-partition { Xy, .. ., Xi} of V.

This was proved with the help of Theorem 3.2, (The proof method gives rise to a
.uo_<=o:.__.m_ time algorithm which is actually strongly polynomial even in the capac-
itated case). Here we prove an extansion of Theorem 3.2 and; using that, darive an
extension of Theorem 3.4. V .
Since (3.3} is a necessary condition for the fractional augmentation, as well, we
can conclude that the integer-valued optimum is the same as the ?mo:o:.m_ ou:.B.:E
Let us turn to the generalization of Theorem 3.2 and 3.4. .

1—.,_:52:: 3.5 LetT be a ground-set, p a non-negative, integer-valued function de-
fined on subsets of T for which p(§) = p(T) = 0 and PX)+p(Y) <p(XnNnY)+
p(X UY) holds whenever p(X) > 0,p(Y) > 0,XNY # 0,T — (X UY) # 9
Let m;, m, be two modular non-negative integer-valved functions on T for 55__.%
mi(T} = mo(T) = . There exists a digraph H = (T, F) for which

ou(X) 2 p(X) forevery X C T (3.4)
and
en(v) = my(v) foreveryv e T {3.5a)
O {v) = my(v) foreveryv e T {3.5b)
ifand only if
mi(X) > p{X) forevery X C T {3.6a}
and
mo(T — X) > p(X) forevery X C T {3.6b)

*
Proof The necessity of (3.6) is straightforward. To see the sufficiency let m :=

mi + my, m.=a call a set X in-tight (resp., out-tight) if (3.6a) (resp., (3.6b)) is satisfied
with equality. We need 4 easy lemmas.
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Lenuna 1 If X, Y are two disjoint out-tight sets, thenm(T" — (X UY)) = 0.

Proof We have m(X) 2 p(X) = mo(T — X) =7 — mo(X) and m;(Y) > p(¥Y) =
Mo(T — Y) = 7 — mo(Y) from which mi(X) + mi(Y) > 2y — mo(X) — me(Y).
Therefore m{X)+m(Y} > 2v = m(T) and hence m{T — (X UY}) = 0, asrequired. ®

Lemma 2 If X, Y are two in-tight sets for whichT = X Y, thenm{X 0 Y) = 0.

Proof We have m (T — X) + mo(T = Y) 2 p(X) + p(Y) = mi(X) + m(Y) =
2y — (T — X) — my(T — Y). Therefore m(T — X) + m(T — Y} > 27 and hence
m(X NY) =0, as required. ]

Lemma 3 /f X is out-tight Y is in-tight and the supermodular inequality holds for
p(X) and p(Y) (for example, if X CY orY C X or X, Y are crossing), then m(Y —
X)y=0.

Proof Fromm,(T—X) = p(X) andm(Y) = p(Y') we have m,(T' = X} +m (Y} =

p(X)+p(Y) <X NY)+p(XUY) <mo(T — (X UY)) +my(X NY) = mo(T -
X)—mo(Y = X)+m(Y)—m(Y — X)and hence 0 < m(Y — X)) <0, asrequired.®

Lemma 4 The intersection and the union of two crossing in-tight {respectively, out-
tight} sets X, Y are in-tight {resp., out-tight}.

Proof We prove the lemma only when X, Y are in-tight. Then m;(X) 4+ m; (Y} =
(X)) +pY) <p(XNTY)+p(XUY) <my(XNY) +mi(XUY) = mi(X) +mi(Y)
from which equality holds everywhere and the lemma follows. |

To prove the theorem let ¢t be a node for which m;(t) is positive. If there is no
in-tight set containing ¢, define Z; := ). By Lemma 2 if there are two in-tight sets con-
taining ¢, then their union Z is not 7', and then, by Lemma 4, Z is in-tight, Therefore
the union Z; of all in-tight sets containing ¢ is also in-tight. If there is no out-tight set
inT —t, define Z, = T. By Lemma 1 if there are two out-tight sets in T' — t, then their
intersection is non-empty, and then, by Lemma 4, the intersection Z, of all out-tight
sets in T — ¢ is out-tight.

It follows from Lemma 3 that the supermodutar ineguality does not hold for p(Z,)
and p(Z;). Therefore Z,N Z; = Bor Z,U Z; = T. We claim that m,{Z, -~ Z;} > 0. For
otherwise, if Z,U2Z; = T,then 0 = my(Z,— Z;) = mo(T—-Z;) = p(Z:) = m;(Z;) = 0.
Hence Z; = 0 and m,(T) = 0, a contradiction. If my(Z, — Z;) = 0and Z,N Z; = 9,
then mi(Z,) = p(Z,) = mo(T — Z,) = « and hence m(T' — Z,) = 0. But then
Z, =T, Z; =0 and m,(T) =0, a contradiction.

Choose an element s in Z, — Z; for which m,(s) > 0. Define p'(X) := p(X) - 1
if X is a t3-set, p(X)} > 0 and define p’(X)} := p(X) otherwise. Clearly p' satisfies
the hypothesis of the theorem. Let m/(s) = mo(s) — 1,m,(v) = mo(v) if v # s.
Let mi(t) = m;(t) — 1,m}{v) = mi{v) if v # t. Because there is no in-tight ts-set,
(3.6a) holds with respect to p’, m’. Similarly, there is no out-tight setin I"— {s,{} and
therefore (3.6b} holds with respect to p’, m..

By induction, there is a digraph H' == (T, F') satisfying the reguirements of the
theorem with respect to p’, m/, m,. But then H = (T, F’ + st) satisfies the require-
ments with respect to p, m;, M. ]
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Remark The proof of the theorem gives rise to a (strengly} polynomial time algo-
rithm to find the desired digraph H provided that the following oracles are available
for p. For any pair of nodes z,y and vector m : V. — Z_, minimize m(X) — p(X)
over the sets X {A) containing both x and y, (B} neither x nor y.

Corollary 3.6 in Theorem 3.5 H may be chosen loopless if and only if (3.6} holds
and

m{v) ;= my(v) + m,(v) < yforeveryve T. {3.7)

Proof |f there is a loopless H satisfying (3.5}, then every edge entering v leaves
T —vandhence m;(v) < m,(T —u), thatis, m;(v) +m,(v) < m (T —v)+m,(v) = v
and the necessity of (3.7) follows.

To see the sufficiency, let us start with a solution H = (T, F') provided by Theorem
3.5 and assume that H has a minimum number of loops. lfthis minimum is zero,
we are done. Suppose that at a node v there is a loop e in H. If there is an edge
f = zy of H with end-nodes different from v then we can replace e and f by zv and
vy. The revised digraph clearly satisfies {3.4) and (3.5} and has one less loop than H,
a contradiction. Therefore v is one of two end-nodes of each edge of H. But then v
violates (3.7). ]

Theorem 3.7 Let p be the same as in Theorem 3.5. There exists a digraph H =
(T, F) satisfying (3.4) so that H has at most -y edges if and only if

MUEX& <7 {32.7a)

and
ST X)<y (3.7b}
holds for every sub-partition { Xy, ..., X,} of T.

Proof The necessity of (3.7} is straightforward. Wa prove the sufficiency with the
following idea. Determine first two functions mn; and m,, satisfying (3.6) and apply
then Theorem 3.5. To this end let m; and m, be integer-valued function on T satisfying
{3.6) (but not necessarily m,(T") = m;(T)) and assume that m, and m, are minimal
with respect to this (3.6a) and (3.6b), respectively. (That is, (3.6a), say, is destroyed if
we reduce m; by one on any element v where m;{v) > 0.)

Claim m;(T) < v and my,(T) < ~.

Proof By symmetry we may assume that m;(T) > m,(T). Increase m, so that
mqo(T") = m;(T) (this way we may loose the minimality of m, but it does not matter}.
Since m; is minimal, every element v € T for which m,{v) > 0 belongs to an in-
tight set. Let F := {X),...,X;} be a family of in-tight sets so that each v with
positive m;{v) belongs to a member of F and |F| is minimum. There are no two
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crossing members of F since, by Lemma 4, their union is in-tight, contradicting the
minimality of 7. W F have two members X,Y for which T = X UY, then by
temma 2, m{X NY) = 0. Applying {3.7b) to {T — X,T — Y} we have m(T) =
mi(X) + mi(Y) = p{X) + p(Y) = ~. Finally, if F consists of disjoint subsets, then
by (3.7a) we get m(T) = 3., m;(X;) = 32, p(X;) = . Now the theorem directly
follows from Theorem 3.5. [ |

Theorem 3.7 implies the following generalization of Theorem 3.4. Let D = (V, E)
be a directed graph and T a subset of nodes. We say that I is k-edge-connected in
T if A(u,v) = k for every pair of nodes u,v € T

Theorem 3.8 Given a digraph D and a subset T of nodes, it is possible to make D
k-edge-connected in T by adding at most v new edges connecting elements of T if
and only if

Msl%pzm:aM@;EE aé
holds for every family F = {X1,..., X} of subsets V forwhich® C X;nT C T

and F|T is a sub-partition of T

Proof Forevery subset X of T define p(X) := max((k-g{XUZ)t : Z SV -T).
This p satisfies the hypothesis of Theorem 3.5 and (3.7) transforms to {3.8) and hence
Theorem 3.7 implies Theorem 3.8. ||

More can be said if D is di-Eulerian outside T, that is, o(v) = &(v) for every
veV -T.

Corollary 3.9 Suppose that D is di-Euferian outside T. It is possible to make D k-
edge-connected in T by adding at most -y new edges connecting elements of T ifand
only if (3.8) holds for every sub-partition F = {X,,..., X} of subsets V for which
dcC X;NT C T.

Proof |f the conditions of Theorem 3.8 are satisfied, we are done. Suppose indi-
rectly that there is a family F = {X;,...,X,} for which F|T is a sub-partition and
F violates (3.8). We may assume that >_ |X,| is minimum. Since a sub-partition of
1 satisfies (3.8), there are two members X, Y of F whose intersection is non-empty.
By the hypothesis every node in X N'Y is di-Eulerian, therefore o(X) + o(Y) =
o(X —=Y)+o(Y ~ X). Replacing X and Y by X — Y and Y — X we obtain a family
F' which also violates (3.8), contradicting the minimal choice of F. [ |

Since the condition in Corollary 3.9 is necessary even if new edges are allowed to
have end-nodes outside T, it also follows that the minimum number of new edges
whose addition makes a digraph k-edge-connected in T does not depend on whether
we may only add edges with end-nedes in T or arbitrary new edges are allowed,
provided that D is di-Eulerian outside 7.

The following generalization of Corollary 3.9 is due to [1]. Let D = (V, E) be a
digraph and let T(D) := {v € V : pp(v) # dp(v)} be the set of non-di-Eulerian
nodes. Let k be a positive integer and r(z,y). (z,¥ € V) a non-negative integer-
valued demand function satisfying
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r{z,y) =r(y,z) < kforeveryx,y € V and (3.9a)

r{z,y) = k for every x,y € T(D). {3.9b)

Let R(P) = R(V) = Oandfor X C V let R(X) := max(r(z,y) : X separates x
and y). Let us define ¢;(X) 1= R(X)} — pp(X), ¢,(X) 1= R(X) — &p(X).

._,_S.o..a:. 3.10 (Bang-Jensen, Frank and Jackson(1]) Given a digraph D = (V, E),
positive integers k, vy, and a demand function r{z,y) satisfying (3.9), D can be ex-
tended to D* by adding v new directed edges so that

Mz, y; DY) = r(z,y) foreveryz,y e V (3.10)
if and only if both
Mﬁ,@&.v < -  (3.11a)
and ’
2_5lX5) <y (2.11b)
F

hold for every sub-partition {X,,..., X;} of V.

Corollary 3.11 Given an Eulerian digraph D = (V, E), and a symmetric demand
function r(z,y), D can be extended to an Eulerian digraph DV by adding Y new
edges so that (3.10) holds if and only if (3.11) is satisfied.

Qur next problem is to find a k-edge-connected augmentation of minimum cardinality
if upper and lower bounds are imposed both on the in-degrees and on the out-degrees
of the digraph of newly added edges. Let f; < g; and f, < go be four non-negative
integer-valued functions on V {infinite valuas are allowed for g; and g,). The following
two results appeared in [18, 19].

Theorem 3.12 Given a directed graph D = (V, E) and a positive integer k, D can
be made k-edge-connected by adding a set F of precisely v new edges so that both

filv) < or(v) < gilv) (3.12a)
and

folv) < 8p(v) < golv) (3.12b}
hold for &very node v of D if and only if both
k—o(X) < g:(X) (3.13a)
and
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k= 8(X) < golX) (3.13b)
hold for every subset ) C X < V and both
STk —elX;) i =1, t) + filXo) S (3. 14a)
J
and
Sk =X =1, t) + fo{Xo) S v (3.14b)

7
hold for every partition { Xo, X1, X2, ..., X} of V where only Xo may be empty.

One may be interested in degree-constrained augmentations when there is no re-
quirement on the number of new edges.

Theorem 3.13 Given a directed graph D = (V, E) and a positive integer k, I) can
be made k-edge-connected by adding a set F of new edges satisfying (3,12} if and
only if {3.13) holds and and

Sk -o(X;): 5 =
J

-t

vt fi(Xo) K a (3.15a)

and
STk-8(X) =10+ fo(Xo) S @ (3.156)

J
hold for every partition { Xy, X1, X4, ..., X:} of V where only Xy may be empty and
o 1= min{go(V), g:(V)).

We close this section by another generalization of Theoremn 3.8, Let [} = (V, A} be
a digraph with two specified non-empty subsets S, T of nodes {which may or may
not be disjoint). We say that D is k-edge-connected from 5 to ' if there are k edge-
disjoint paths from every node of 5 to every node of T. (When 5 = T we are back at
k-edge-connectivity.) We say that 2 family of subsets of nodes is (&, T')-independent
if it contains at most one t3-set for every pairs € S,t € T

Theorem 3.14 A digraph D = (V, E) can be made k-edge-connected from 5 toT
by adding at most vy new edges with tails in § and heads inT if and only if

> (k—e(X)) <
i
holds for every choice of (S, T)-independent family of subsets X; C V where TN
X; #£8,8 - X; # 0 foreach X;.

In all other theorems in this section {except the Lucchesi-Younger theorem) sub-
partitions played the main role in the characterization in question. In Theorem 3.14 the
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characterization is more complicated. In fact, its proof goes along a line completely
different from the approach applied for proving the previous theorems. The theorem
is a consequence of a general result of [20] on crossing bi-supermodular functions,
which among others, gives rise to a solution to the node-connectivity augmentation
problem of directed graphs. This is the topic of the next section.

4 Node-Connectivity Augmentation of Digraphs

Given a directed graph DD = (V, E), how many new edges have to be added to D to
make it k-node-connected, in short, k-connected. Recall that a digraph is called k-
connected if it remains strongly connected after deleting at most k£ — 1 nodes. That is,
k-connectivity is defined only ifk < n — 1. If k = n- 1, then in a k-connected digraph
xy is an edge for every ordered pair {x,y} of nodes. This case is uninteresting so
we will assume that k& < n - 2, Also, when k = 1, edge-connectivity and node-
connectivity coincide (:strong connectivity) so we will assume thatk > 2,

In Section 2 we indicated that a related augmentation problem, when the goal is to
reach k-connectivity from a specified node, could be solved [23), including .Sm. mini-
mum cost version. The general minimum cost k-connectivity augmentation problem
is NP-complete so we concentrate only on the minimum cardinality case. Masuzawa,
Hagihara and Tokura (1987) solved it when the starting digraph is an arborescence (a
directed tree so that every node is reachable from a source-node). Their result easily
extends to branchings:

Theorem 4.1 {Masuzawa etal. 1987} The minirnum number of edges whose addition
makes a branching D = (V, E) k-connected is (3_(k ~ §(v))* : v € V), that is, the
sum of out-deficiencies of the nodes.

For more general digraphs stronger lower bounds are required. One natural idea is
to mimic the approach applied successfully in Theorem 3.4. For a subset X of nodes
{with |V — X[ > k 4 1) let I(X) (respectively, O(X)} denote the set of nodes in
V — X irom which there is an edge to X (into which there is an edge from X). In a
k-connected digraph the cardinality of 7(X) and O(X) must be at least k. Therefore,
if the digraph is not k-connected, we may call the quantity Q;(X) := (k — [I(X)])*
the in-deficiency and Qo (X) := (k - |O(X)|)* the out-deficiency of set X. Ciearly,
if there is a family of disjoint sets (each having cardinality at most [V| — 1 — &)), then
the sum of the in-deficiencies and the sum of out-deficiencies are both lower bounds
for the necessary number of new edges. Theorem 3.4 asserted that the maximum
of the analogous lower bounds in the edge-connectivity augmentation provides the
correct minimum for the number of new edges. Unfortunately, this is not the case
for node-connectivity even if the starting digraph is k£ — 1 connected. An example
in [36] shows that the minimum of the required new edges may be k ~ 1 larger than
the maximum sum of out- or in-deficiencies of a sub-partition. (On the other hand, in
a recent paper[21] we can derive from the general min-max theorem below that this
gap actually can never get biggerthan k& — 1.)
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Theorem 2.1 however suggests that, instead of single sets, it might be helpful
to consider pairs of disjoint sets. Let us call an ordered pair (A, B) of non-empty
disjoint subsets of nodes one-way if there is no edge in D from A to B. The deficiency
Pacf(A, B) of a one-way pair Is defined by (k — ([V - (AU B)|))}*. Clearly in a k-
connected augmentation of IJ at least that many edges from A to B must be added
to I2. Finally, call two pairs (A;, B;}(7 = 1,2) independent if at least one of A, N A,

and By N By is empty.

Theorem 4.2 {Frank and Jordan (201} A digraph D = (V| E) can be made k node-
connected by adding at most -y new edges if and only if

Y (pacs(X,¥): (X, Y) € F) <y (4.1)
holds for every family F of pairwise independent one-way pairs.

Since this is a characterization for a general starting digraph, one may expect that
Theorem 4.1, where the starting digraph is a branching, can be derived from it. So
far we were not able to do that. The following conjecture, if true, is a generalization

of Theorem 4.2,

Conjecture I D is a simple acyclic digraph, then the minimum number of new
edges whose addition makes D) k-connected is equal to the maximurm of the sum of
out-deficiencies and the sum of in-deficiencies of nodes.

Note that M, Bussieck {3] pointed out that the the corresponding statement for
adge-connectivity easily follows from Theorem 3.4.

Actuaily, Theorem 4.2 is a special case of a more general result. Let V be a ground-
set and S, T two {not-necessarily disjoint) subsets of V. Let A denote the set of all
directed edges st forwhichs € S|t € T,

Let A denote the set of all ordered pairs (X, Y )with X T 5, Y C T. Wecall X
and Y the tail and the head of the pair, respectively. A directed edge xy covers a pair
(X, Y)e Aifz € X,y € Y. We say that a sub-family JF of A is independent if every
edge of A covers at most one member of F. This is equivalent to requiring that there
are no two members (X;, Y;)(i = 1,2) of Fforwhich X, N Xs #Band ¥, Y, # @,

Let p be a non-negative, integer-valued function defined on A for which p{X,0) =
p(B,Y) = 0. We say that p is crossing bi-supermodular if

XV +p(X, YY) <p(Xn X, YUY+ p(XUX,YNY') {4.2)

holds whenever p(X,Y),p(X",Y) > 0. X n X, ¥ NY' # . .

For a non-negative function x defined on A, define §.(4, B) := Y _{z(s,t) 1 5
St € T). We say that z covers p or that z is a covering of pif 6 > p. The main result
n (20, 21]is;

T'heorem 4.3 For an integer-valued crossing bi-supermodular function p the fol-
lowing min-max equality holds. t, := min(z(A} : z an integer-valued covering
ofp) = v, 1= max(p(F): F C A, F independent).
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Theorem 4.2 as well as Theorems 3.4 and 3.7 are special cases of this result and The-
oremn 3.5 can also easily be derived from it. {In[20, 21] a difficult min-max theorem on
intervals of E. Gy&ri was also shown to be a consequence but this has nothing to do
with connectivity augmentation). Having so many corollaries, it is indeed surprising
that the proof of Theorem 4.3 is short and is rather standard {demonstrating nicely
that finding the right notions and formuiation of results might subsume sophisticated
proofs.) This proof is, however, not constructive! Theugh the theorem may be used
to develop a polynomial time algorithm for finding & minimum k-connected aug-
mentation of a digraph, the algorithm is based on the ellipsoid method. Designing
a combinatorial algorithm for this task is one of the most challenging algorithmical
problems of the area. We do not know such an algorithm even if D is (k - I)-
connected, that is, the goal is to increase the connectivity of D only by 1 {For k = 1,
Eswaran and Tarjan have such an algorithm. In a recent paper we developed an
algorithm for k = 2 [21]).

In the same paper we were able to show that in Theorem 4.2, if D is (k — 1)-
connected, then the optimal digraph of new edges may be chosen to consist of disjoint
directed paths and circuits. This implies

Theorem 4.4 Let D be a k-connected digraph for which the in-degree and out-
degree of every node is k. Then it is possible to add disjoint directed circuits to
D so that the resulting digraph D* is (k 4 1)-connected.

MNote that it is not always possible to increase the connectivity of a digraph by
adding a directed Hamiltonian circuit. {Take a digraph arising from K3 3 by replacing
each edge by two oppositely directed edges.)

5 Edge-Connectivity Augmentation with Undirected Edges

The purpose of the present chapter is to review results concerning edge-connectivity
augmentation when only undirected edges are aliowed to be added. Typically the
starting graph G = (V, E) is also undirected but many results extend to mixed starting
graphs as well.

Let r(x, y) be a symmetric, non-negative, integer-valued function defined on the
pairs of nodes. Add a minimum number of new edges to & so that Az, y; G*) >
r{x,y) holds for every pair of nodes z, y of the augmented graph G'+.

The first results concerned the special case when the starting graph has no edges.
Forthe fractional version of this case R.E. Gomory and T.C. Hu [28] provided an elegant
solution and proved that the optimal {fractional) augmentation can be realized by haif-
integers. W. Chou and H. Frank [5] solved the integer-valued version, in another paper
Frank and Chou[5] solved the restricted problem when no parallel edges are allowed
to be used. J. Edmonds |6] proved that if there exists a simple graph with a specified
degree séquence and each degree is at least k, then there is a k-edge-connected
simple graph with the given degree sequence.

The first papers concerning general starting graphs appeared in 1976. K. Eswaran
and R. E. Tarjan and J. Plesnik solved the 2-edge-connectivity augmentation problem.
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Eswaran and Tarjan also provided a linear time algorithm while Plesnik’s paper is the
first where the idea of splitting off technique appears. In a tiny note at the end of
his paper, Plesnik remarks that the 2-edge-connectivity augmentation theorem also
follows from a (then recent) theorem of Lovasz on splitting off edges. It turned out
that this approach has far reaching consequences. The general __n.mamm-no::mn:,\:.,\
augmentation problem was solved by T. Watanabe and A. Nakamura[54). In their
solution there is no restriction on the humber of copies a new edge may be added.
It is an important open problem to find atgorithms that does not add parallel edges.
Very recently this task was solved for the special cases k < 5 by Taoka, Takafuji and

Watanahel51]. -
The fundamental min-max theorem of Watanabe and Nakamura is as follows.

Theorem 5.1 The minimum number of edges whose addition makes an undirected
graph G = (V, E) k-edge-connected (k > 2) is equal to

max[ (> (k ~ d(X:)))/2] (5.1)

i
where the maximum is taken over all sub-partitions {X,,..., X} of V.

The proof of Watanabe and Nakamura is based on the recognition that the aug-
mentation problems for different k's are strongly related, They prove various exciting
structural properties of edge-connectivity augmentations. Below we cite two of them.
These are not only the basis of their augmentation algorithm but serve as a framework
for subsequent improved algorithms as well [47, 27, 2).

Let us first study how an optimal sub-partition for (5.1} may be found. Itis an easy
observation that for any fixed integer [ the relation " A(z, y) > I” on the node-set of a
graph G = (V, E) is an equivalence retationship. An equivalence class may be calied
an edge-connectivity component {in short, ec-component ) or an [-component. (That
is, an [-component is a maximal subset of nodes for which A{x,y) > [} From the
definition it is straightforward that the family F.. of all ec-components is a laminar
family {and hence it has at most 2n members). For | = 0 the node-set V is an
ec-component and for [ = |E| + 1 each single node is a ec-component.

Call a subset X C V extreme if d(X') > d(X) holds for every proper, non-empty
subset X’ of X. If we choose an optimal sub-partition in {56.1) so that the union of its
members has minimum cardinality, then the sub-partition consists of extreme sets.
In other words it suffices to restrict {5.1) on sub-partitions consisting of extreme sets.
The following lemma is basic to explore the structure of extreme sets.

Lemma 5.2 Each extreme set is an edge-connectivity component.

Proof Let C be an extreme set and let { := min{A(x,y) : x,y € C). Since V and
2ach singleton is an ec-component, we may assume that I < |C| < |V/|. We have to
show that A(z, y} < lforanypairz € C,y € V—C. Thisisclearly the case if d(C) < |
so suppose that d(C') > . By Menger's theorem there is a set M for which A/ »C and
C' — M are non-empty and d{ M) = [. By taking the complement if necessary, we may
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assumethatz € M. Ify € M, then we have d(C)+d(M} > d(CN M} +d(CUM) >
d(C) + d{C U M) and therefore A(z,y) < d(CUM) < d(M) =1 Ify € M, then
we have d(C) + d(M) > d(C — M) + d(M — C) > d(C) + d(M — C) and therefore
Mz, y) <d(M -Cy<d(M) =1 |

By this lernma the family F™* of extreme sets is a sub-family of F,. and therefore
itis a laminar family. Since the ec-compenents of G can be computed with the help
of a Gomory-Hu tree, F* can also be computed. The nice thing is that the family of
extreme sets includes all information which is required to determine the optimum in
{5.1) for any k.

This may be done recursively. For each extreme set X let us define the recursive
k-deficiency R;(X) as follows. For singletons let Ri(v) := {(k — d{v))*. If for alt
maximal extreme subsets X’ of an extreme set X (which form, incidentally, a sub-
partition of X) R, (X') has already been determined, then define R (X) := max({k -
d(X N, Y (Re{X') - X' is a maximal extreme subset of X)). Paraliet to this we may
store a sub-partition R (X} of X. it consists of the single set. X if the maximum in
the definition of Rx(X) is attained on the first term. If the maximum is attained on
the second term, then let R (X)) := U(R (XY : X’ is a maximal extreme subset of
X). From the definition, it is clear that, among the sub-partitions R of I/ consisting
of extreme sets, R, (V) maximizes the sum 3 _(k — d{X) : X € R) and therefore R,
is an optimal solution to (5.1).

Not only the best sub-partitions for different values of k may be encoded into a
single laminar family (of the extreme sets) but Watanabe and Nakamura proved that
the optimal edge-connectivity augmentations for increasing & may be chosen as a
sequence of ever increasing m.cvma_.m_u:mn :

Theorem 5.3 Suppose that the edge-connectivity of the starting graph G is!l. There
is a sequence G; 1= G,Grq1,Gry2,-.. of graphs so that foreachi > |, Giy1 is 3
supergraph of G; and G, is ani-edge-connected augmentation of G using a minimum
number of new edges.

Watanabe and Nakamura described how to compute this sequence in polynomial
time. Gusfield, Naor and Martel [47] and Gabow [27) found improvements for the
complexity, One apparent disadvantage of this approach is that the resulting algo-
rithm is not strongly polynomial if the target edge-connectivity & is very big. This is
clearly so since the approach uses one-by-one augmentations. A. Benczur [2] how-
ever devised a clever grouping technique to make the algorithm of Watanabe and
Nakamura strongly polynomial.

The first strongly polynomial algorithm [18, 19] for the k-edge-connectivity aug-
mentation problem followed a different line. One of its basic ideas, the use of the
splitting off technique, was suggested by Plesnik [48] when k = 2 and by Cai and
Sun [4] for arbitrary k >> 2. Using splitting off is equivalent to using degree-prescribed
mcm:,_mnﬁmm_o: problems.

Theorem 5.4 LetG = (V, E) be an undirected graph andm a modular non-negative
integer-valued function on V. G can be made k-edge-connected (k > 2) by adding a
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it F of new edges so that

dp(v) = m(v) (5.2

yids for every node v if and only ifm(V') is even and
Xy +m{X}Y 2k

»lds for every non-empty proper subset X of V.

{5.3)

lis theorem is an immediate consequence of Lovasz's theorem on splitting off:

heorem 5.5 (Lovdsz [25, 42]) Suppose thatina graph G’ = (V + s, EY di{s)>10
even and

Mz, y) 2 k (5.4}

olds for every pair of nodesx,y € V. Then the edges incident to s can be paired into
{(5)/2 pairs so that after splitting off these pairs the resulting digraph on node-set
is k-edge-connected.

s derive Theorem 5.4, add a new node s to D and m(v) parallel edges Um?a..mm:.c
1d s for every v € V. Then (5.3) is equivalent to (5.4) and the edge-set I arising in
1eorem 5.5 from the splitting off operations satisfies the requirements in Theorem

4,
An equivalent form of Theorem 5.1 of Watanabe and Nakamura is:

heorem 5.1' An undirected graph G = (V, E) can be made k edge-connected by
iding at most -y new edges if and only if

> (k—d(Xi) <2 (5.5)

olds for every sub-partition {X;,..., X} of V.

roolf  Letn be an integer-valued function for which {5.3) holds and m is minimal
ith respect to this property. Calt a set X tight if it satisfies (5.3} with equality. We
aim that if X and Y are intersecting tight sets, then both X - ¥ and Y — X aretight
nd m{X NY) = 0, Indeed, k - m(X) + k —m(Y) = d(X) + dY)=d(X -Y)+
(Y-X)2hk-m(X-Y)+k-m(Y -X) = k—m(X)+k-m(Y)3+2m(XnNY),
om which the claim follows. ]

By the minimality of m there is a family F of tight sets so that each v for which
(v} is positive belongs to a member of 7. Choose Fsothat > (|X]: X € \..J is
sinimum. This choice and the claim shows that F is laminar. Therefore the maximal
Jembers of F form a sub-partition {X1,..., X} of V covering all elements v with
y(v) > Q. .

it follows from (5.5) that m(V) = 3, m(X:) = 3_;(k~d(X;)) < 2v. Byincreasing
1 if necessary, we may assume that m(V} = 2v. Finally, by applying Theorem 6.4
3 this m, Theorem 5.1' follows. =



Let us turn to the general augmentation problem when we are given an arbitrary
starting graph G = (V, E)), an arbitrary {symmetric, non-negative, integer-valued)
demand function r(z, y) and the goal Is to determine the minimum number of new
edges to be added to GG so as to obtain a graph G¥ for which

Alx,y;GT) 2 r(z,y) (5.6}

holds for every pair of nodes z,y in the augmented graph G*. We may call an
augmentation satisfying (5.6) feasible. If F is the set of new edges in a feasible
augmentation, a vector in ZY defined by (dr(v) : v € V) is called an augmentation
vector.

Recall that the corresponding augmentation problem for directed graphs is NP-
complete already for very special demand functions {e.g.. if r(z,¥) = 1 when both
z and y belong to a subset 7" of nodes and 0 otherwise.) In this light it is especially
surprising that the undirected augmentation problem is tractable for any starting
graph and for any demand function [18, 19]. =

in order to formulate the general augmentation result, let us define a set-function
K on the subsets of V' so that R(@) := R(V)} := 0 and

R(X) 1= max(r(z,y) ;2 € X,y V - X). {5.7)

By Menger's theorem A(z,y) > r(z,y) holds in a graph for every pair of nodes =, y
ifand only if d(X) > R(X) for every subset X C V. That is, 2{ X) serves as a lower
bound for the number of edges in a cut (X, V ~ X] and g(X) := (R(X)—d(X)Nt
inay be considered as the deficiency of X. Now

_,:mxA:M ¢(X:))/2] + {X1, Xa,..., X} a sub-partition of V') (5.8}

is a lower bound for the minimum nymber (G, 7) of new edges. Theorem 5.1 asserts
that this lower bound is achievable if r = k(> 2).

On the way to generalize Theorem 5.1 we have to prepare, however, to overcome
a little anomaly indicated already by the fact that Theorem 5.1 is not true for k = 1
(take a starting graph on four nodes with no edges) while the augmentation problem
when k = 1 is trivial. This distinction must be handled in the general case, as well,
To this end let C'(# V') be the node-set of a component of G and call C' a marginal
component (with respect to the demand function 7} if ¢(C) < 1 and g(X) = 0 for
every proper subset of C,

The solution in [18) to find a minimal feasible augmentation of ¢ consists of two
parts. In the first part the marginal components are eliminated while the second
one consists of proving {algorithmically} that ¥(G, 1) is equal to the maximum in
{5.8) when there are no marginal components. {This is, by the way, the case if G is
connected?.

Let C' be a marginal component, 3, := G — C and let r1 denote the demand
function restricted on the node set of G;. Itis provedin [18lthat ¥(G,7) = v(Gy, 71} +
q(C). It is also shown how an optimal feasible augmentation of G, can be extended

S5

to an optimal feasible augmentation of G by adding ¢(C') (which is 0 or 1} edge. This
way we can eliminate the marginal components one by one.

Theorem 5.6 IfG has no marginal components, there is a feasible augmentation of
G using at most v new edges if and only if

> q(Xi) < 2y (5.9)
i
holds far every sub-partition { X1, Xz,..., Xy} of V. Or, equivalently, the minimum
number of new edges ¥(G,r) = max({(3, ¢(X:))/2] : {X1, Xa,..., X:} a sub-
partition of V'),

Corollary 5.6' Let G = (V, E) be an undirected graph, r(u,v) an Nzummm_ﬁ,\m__cmo_
demand-function such that G has no marginal components, and g an integer-valued
capacity function on E. There is an optimal solution to the ch:.mmBQ max-flow
augmentation problem which is half integral. Furthermore, an on::.qm__ Samm.m_‘._\m_.cmu
solution is either optimal among the real-valued augmentations or its total increment
is one half bigger than that of a (real-valued) optimal solution.

The key to the proof of Theorem 5.6 is the folfowing deep splitting off theorem of W.
Mader.

Theorem 5.7 (Mader [44]) Let G’ = (V + s, E') be a (connected) undirected graph
in which 0 < dg(s) # 3 and there is no cut-edge incident with s. Then there exists a
pair of edges e = su, f = st so that

Az, 31 G) = Mz, y; G)

holds foreveryz,y € V.

{For a relatively simple proof, using submoduiarity, see {18, 19)} In Section 3 it was
pointed out that Mader’s directed splitting off theorem is equivalent to ._..:mo._.mE 3.2
on the existence of a k-edge-connectivity augmentation of a digraph satisfying pre-
scriptions of the in-degree and out-degree. Analogously, Theorem 5.7 is equivalent

to:

Theorem 5.7 Letm : V — Z, be an integer-valued function so that m(V') is even
and m(C) = 2 for each component C of G = (V, E). There is a set I of new edges
sothatG* = (V, E+ F) is a feasible augmentation of G and dp(v) = m(v) for every
node v {that is, m is an augmentation vector) if and only if

m(X) 2 R(X) — de(X) {5.10)
forevery X C V.

The materia! of the closing part of this section is taken from a recent work of [1]. They
proved an extension of Mader's theorem when the graph is a mixed one but all edges
incident to s are undirected. This was used to derive a generalization of Theorem 5.6.
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Let N = (V, ' + A) be a mixed graph composed from an undirectad graph & =
.2\_ E} and a directed graph D = (V, AyinwhichT(D):= {ve V: on(v} # dp(v}}
is the set of non-di-Eulerian nodes. Let & > 2 be an integer and r(x,y) (z,y € V) a
non-negative, integer-valued demand function satisfying N

r{z,y) = r(y,z) < kforevery 2,y € V and (5.11a)

r(z,y} = kforevery z,y € T(D). {5.11b}

Let () = R(V) = O and for X C V let R{X) := max(r(z,y) : X separates «
and y). We say that a component C of N is marginal {with respect to »} if »(u, u) <

Ay, v; V) for m<m2.e._ ve Candr(u,v) < Au, v; N) + 1 for every u, v separated by
C. Let Bn(X) i= min(op(X)} + dg(X),6p(X) + da(X)).

Theorem 5.8 (Bang-Jensen, Frank and Jackson [1]} Givenamixedgraph N, integers
k> 2 v >0, and a demand function r(z,y) satisfying (5,11) so that there is no

marginal components, N can be extended to a mixed graph N* by adding ~v new
undirected edges so that

Mz, yi NYY 2 r(x,y) foreveryz,y e V (5.12)
ifand only if

D (R(X:) ~ Bn(Xa) < 2+ (5.13)
holds for every sub-partition {X1,..., X} of V.,

wmﬁo._.m Theorem 5.6 we indicated how to eliminate marginal components when the
starting graph is undirected. A similar reduction works for mixed undirected graphs
as well, When /N is an undirected graph, Theorem 5.8 specializes 1o Theorem 5.6
When r = k for an integer & = 2 Theorem 5.8 specializes to: h

Corollary 5.9 Let N = (V, AU E) be a mixed graph and k > 2,y = 1 integers. N
can be made k-edge connected by adding -y new undirected edges if and only if

D (k- Bn(X)) < 2y
holds for every sub-partition {X1,.. X} of V.

This corollary is not true for k = 1. {Let N be a digraph with 4 nodes and 3 edges so
that the heads of the edges are distinct but their tails coincide) However, the following
can be proved.

Theorem 5.10 A mixed graph N with connected underlying graph can be made
strongly connected by adding 7 new undirected edges if and only it {*) for any family
F ofy +M disfoint subsets of nodes contains {not necessarily distinct) members X, Y
for which on(Y) > 0 and §5(Y) > 0. _

{A mixed graph is strongly connected if every node is reachable from every other
node along a path not using oppositely oriented edges.)
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6 Node-Connectivity Augmentation of Undirected Graphs

in this section we want to make an undirected graph G = (V| E) k-connected by
adding a minimum number of new edges. In previous sections we pointed out that
the k-edge-connectivity augmentation problem is tractable for both directed and undi-
rected graphs. it turned out that undirected edge-connectivity augmentation behaves
better than the directed one in the sense that even the general-demand augmenta-
tion is solvable in the undirected case. Section 4 described a nice min-max theorem
for the directed k-connectivity augmentation. From these data one hopes that the
undirected k-connectivity augmentation problem alsc has a solution. Unfortunately,
at present, it is not known if the problem is NP-complete or is perhaps in co-NPNNP
oreveninP.

For general k, F. Harary [31] found the solution when the starting graph has n
nodes but no edges. Wang and Kleitman [63] determined a necessary and sufficient
condition for the existence of a k-connected graph with specified degree sequence.

For general starting graphs, solutions are known only for small k. When & = 1
the problem is obvious. Plesnik [48] and Eswaran and Tarjan [11] proved a min-max
formula for £ = 2 and the latter paper described a linear-time algorithm, as well, to
construct the optimal augmentation. For a subset X of nodes let V(X) denote the set
of nodes in V' — X which have a neighbor in X. In a k-connected graph |[N{X)!| > k
whenever | X| < |V| — k — 1. Therefore, in a k connected augmentation of & at least
ge(X) = (k— N(X))* new edges must be in the cut [X,V — X|. Hence

max{ :M g:{X:))/2] : {X;}a mcc-um&zom of V) (6.1}

is a lower bound for the minimum number of new edges. Theorem 5.1 asserted
that in the edge-connectivity augmentation an analogous lower bound is achievable,
except the {otherwise trivial} case of £k = 1. The difficulty of the node-connectivity
augmentation arises from the fact that this kind of trouble may occur for any big k.
For example, let 7 be a star, that is, G is a simple graph on n nodes in which every
edge is incident to a node 5. The bound of {6.1) when k = 2is [(n — 1)/2] . But
to make G 2-connected one needs n — 2 edges. From this example we may extract
another lower bound for k = 2. Let ¢(X) denote the number of components of the
graph arising from G by deleting the node-set X. Then at least c{v} — 1 new edges
have to be added to GG to make it 2-connected,

Theorem 6.1 {Eswaran and Tarjan [11], Plesnik [48]) An undirected graph G can be
made 2-connected by adding at most -~y new edges if and only if

Mﬁw — |N(X;)|) < 27 for every sub-partition {X,;} of V (6.2)
i
where (| X;| < |V} - 3) and
efv) < y+1 {6.3)

for every nodev € V.
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For the 3-connectivity augmentation problem an analogous theorem holds:

Theorem 6.2 {Watanabe and Nakamura [54, 55]) An undirected graph G can be
made 3-connected by adding at most y new edges if and only if

ME — |N(Xi)|) < 2+ for every sub-partition {X;} otV (6.2°)

where (|X;| < |V| - 4) and

e(X)<y+1 (6.3°)

for every 2-element subset X of V,

Watanabe and Nakamura also developed a polynomial-time algorithm to find the opti-
mal augmentation. A linear time algorithm (and another proof) was given by Hsu and
Ramachandran [33). Jordan [37] solved the ammamm-oo:mqwmama 3-connectivity aug-
mentation problem when the starting graph is 2-connected:' in particular, he proved
that G can be made optimally 3-connected by adding disjoint paths.

More generally, if the starting graph G is k-1 connected, then both max|[ (3", g.{X;
))/21 and max(c(X)—1) are lower bounds for the number of new edges where {X;}
is a sub-partition of V consisting of subsets of at most V] -k —1elements and X is
a cut-set of precisely & — 1 elements. Theorems 6.1 and 6.2 are equivalent to saying
that the maximum of these two lower bounds are achievable when & — 2,3. But not
so if K = 4 as is shown by K3,3. Here the optimum is 4 while the first maxirmum is
3 and the second is 2. For this case (that is, to find a minimal 4-connected augmen-
tation of a 3-connected graph) a polynomial algorithm was developed by T. Hsu [3].
He also showed that the maximum of the two lower bounds is achievable except for
some weli-described small graphs. A related nice result of Jordsn [37] asserts that a
3-regular 3-connected graph on at least 8 nodes can be made 4-connected by adding
a perfect matching.

For higher % the complete bipartite graph Ky _y 11 shows that the gap between
the maximum and the minimum may be as big as k — 3. T. Jordan [35) proved that
this is the largest possible gap for any (k — 1)-connected starting graph. Relying on
this theorem, he developed a palynomial time algorithm to make an arbitrary (k —1)-
connected graph k-connected and the solution provided by the algorithm uses at
most (£ — 3)* more edges than the optimum. To compute this optimum exactly
seems to be out of reach at the time of writing this paper.

There is a fractional version of the connectivity augmentation problem. We say
that a weighting on the edge-set of a graph G is connected if the total weight of every
cut is at least 1. We say that a weighting is k-connected, if leaving out any set of at
most k — 1 nodes leaves a graph with connected weighting. Clearly if all weights are
1, thaf this definition gives back the original definition of k-connectivity.

The fractional node-connectivity augmentation problem is the following. Let G =
(V, E) be a simple undirected graph. Define we(x,y) = 1if xy is an edge of ¢ and
we(z,y} = 0 otherwise. The goal is to determine a non-negative weighting 1w on
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the edge set of the complete graph on V so that w + we is k-connected and 1w is
minimum,

By an elementary construction this problem can be reduced to the directed node-
connectivity augmentation problem. As a consequence of Theorem 4.2 one may
derive that the optimal fractional augmentation may be chosen half-integrai. For
example, if the starting graph is kr_1k—1.then an optimurn fractional augmentation
is 1/2 on the edges of a circuit in both parts, that is, its total value is k — 1. Compare
this with the integer optimum which is 2(k - 2).

7 Polyhedral and Algorithmic Aspects

In Sections 3 and 5 we saw that the cardinality version of the k-edge-connectivity
augmentation problem is tractable for both directed and undirected graphs, while
the minimum cost version is NP-complete. But there is a restricted class of cost
functions, the node-induced costs, when even the minimum cost augmentation prob-
lem is solvable. The idea Is based on the fact that the degree sequences belonging
to possible graphs of new edges in feasible augmentations of the starting graph
span a g-polymatroid. G-polymatroids generalize polymatroids which are general-
ization of matroid polyhedra. The matroid greedy algorithm may be extended to
g-polymatroids. This feature makes it possible to solve minimum node-cost aug-
mentation problems.

Another important property of g-polymatroids is that their intersection with a box
is again a g-polymatroid. Thisis why the degree-constrained augmentation problems
can be handled {see, for example Theorem 3.12).

Here we illustrate some details of this polymatroidal approach concerning the
undirected case. The basic framework is similar for directed augmentation. Details
may be found in [18, 19].

Let V' be a finite ground-setand b : 2¥ — Z U {oc} an integer-valued set-function
which is zero on the empty set. We call b fully {intersecting} submodular if

B(X)+b(Y)>b(XNY)+ (X UY) 7.1
holds for every (intersecting) X, Y C V. A set function p is called supermodular if
—pis submodular. We say that p is skew supermodular if for every X, Y C V at least
one of the following inegualities holds:

pX)+p(Y)<p(XNnY)+p(XUY),
pX)+p(Y) <p(X -Y) +p(Y - X).

Note that intersecting supermodular functions are skew supermodular.
We say that a pair (p,b) of set-functions is a strong pair if p (resp. b) is fully
supermodular {submoduiar) and they are compliant, that is,

BX}-pY) 22X -Y)-p(Y - X) (7.2)
holds for every X, Y C S. if pand b are intersacting super- and submodular functions
and (7.2) holds for intersecting X, Y, then (p, b) is called a weak pair.
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Given a strong pair {p, b), the polyhedron
Q(p,b) == {z € R¥ : p(A) < z(A) < b(A) forevery A C S).

is called a generalized polymatroid (in short, g-polymatroid.} For technical reasons
the empty set is also considered as a g-polymatroid. Properties of g-polymatroids
were extensively studied in [22]. It can be proved that Q := Q(p, b) is non-empty
and that Q uniquely determines p and g, that is, different strong pairs define different
g-polymatroids. On the other-hand (p/, ¥’} is a g-polymatroid for any weak pair. Let f
and g be two integer-valued functions on V with f < gandlet B:={z: f <z < g}
a box.

Theorem 7.1 Foraweakpair(p', V') the intersection M := Q(p', YN B is anintegral
g-polymatroid. M is non-empty if and only if

9(Zo) + Y _(Z:) > p'(Uis0Z:) and”. -

i>1

HZo) + )P (Z:) < ¥(UinoZ)

i>1
holds for every sub-partition {Z:} of V where only part Z, may be empty.

This theorem is in the background of connectivity augmentation results {such as
Theorem 3.12} when upper and lower bounds are imposed on the degrees of the
augmented graph.

Contra-polymatroids form a special class of g-polymatroids. Given a fully super-
modular, monotone increasing function p,

Clp) :={z € RS : 2 > 0,2(A) > p(A) for every A C S}

is called a contra-polymatroid. Such a p is uniquely determined by the polyhedron
but weaker functions may also define contra-polymatroids.

Theorem 7.2 Let p* be a skew supermodular function. Then C{p*) is a contra-
polymatroid whose unique fmonotone, fully supermoduiar) defining function p is
givenbyp(X) := max(3_ p*(X;)) where the maximum is taken over ali sub-partitions
Akuw of X.

This theorem {proved in [18, 19]) made it possible for minimum nede-cost and
degree-constrained augmentation problems to become tractable. The link between
augmentations and contra-polymatroids is revealed by the observation that the func-
tion g(X) := R(X) — dg(X) is skew supermodular. (For the notation, see Theorem
5.6.)

Recall the notion of an augmentation vector, Combining Theorem 7.12 and The-
orem 5.6 together we obtain:
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Corollary 7.3 For a connected graph G, an integer vector z is an augmentation
vector if and only if (V') is even and z € C(y).

Suppose we are given a non-negative cost-function ¢ on V. For each possible new
edge ry define a cost by c(z) + e(y). We call stich a function a node-induced cost
function. With a slight modification of the greedy algorithm one can find an integer-
valued element z of C(g) with z(V') even which minimizes ¢z, Therefore, for node-
induced cost-functions, the minimum cost edge-connectivity augmentation problem
can be solved in polynomial time.
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