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1. Introduction, preliminaries

Intuitively, a graph is felt to be connected if there is no way to separate it into two
parts with no connection between the two parts. Or, equivalently, for any two
nodes of the graph there is a path connecting them.

If one is interested in various properties of graphs, it is often useful to
dismantle the graph into connected components and then investigate those
components separately. For example, to decide whether a graph is k-colorable it
suffices to deal with the connected components. A similar idea works for higher
connectivity, as well. Namely, we separate first the graph into highly connected
parts, then establish properties of these parts, and finally, using these propertics
we try to obtain information about the whole graph. For example, to prove
Kuratowski’s theorem on plane representation of graphs one can assume first that
the graph is 3-connected since otherwise the graph can be decomposed along a
2-separation and the planar representations of the smaller parts can be pieced
together. Second, by exploiting stronger properties of 3-connected graphs one can
more easily deduce Kuratowski’s theorem for 3-connected graphs. (See Thomas-
sen 1980b.) (We remark that the same program proved extremely useful for
matroids, as well.)

But what does “higher connectivity” mean? Intuitively, one may have at least
two possible definitions for k-connectivity. First, the graph is not only connected
but remains so after deleting any set of at most & — 1 nodes. Second, a graph is
k-connected if there are k (openly) disjoint paths between any two of its nodes.
Fortunately, by a theorem of Whitney, these seemingly different concepts
cotncide. Whitney’s (1932) theorem is an easy consequence of what can be
considered the fundamental result of this whole chapter: Menger's theorem. It
states that either there are & openly disjoint paths between two specified nodes or
there is a set of less than k& elements separating these two nodes.

Another source of the theory to be surveyed here is network flows. Its basic
result, the max-flow min-cut theorem, can be considered as a capacitated (and
directed) counterpart of Menger’s theorem. Network flow theory is a systematic
treatment of combinatorial optimization problems. It found a great number of
applications in practice as well as in other branches of mathematics.

In this chapter we try to provide a rather comprehensive overview of results
belonging to this area. Certain (mostly easier) parts are discussed in greater detail
in order to give some hints on the general techniques used. Other parts are more
difficult so we confine ourselves to give a general framework filled with various
results but no proofs. In some cases, however, when it did not need too much
space, proofs of some deep theorems (e.g., Tutte’s wheel theorem or Nash-
Williams’ theorem on covering trees) have been included.

Throughout the chapter we use the following notation. Let V be a finite set and
5, t elements of V. A subset X of V is called an s¢-set if s € X CV —t. We often do
not distinguish between a one-element set and its single element. Let D = (V, A)
be a digraph. The elements of A are called directed edges or arcs. For S CV let
A™(S) denote the set of arcs with tail in § and head in V — S. We use the notation
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AT(S)=4%(V-8), 87(S)=:14"(S)|, 6" (S):=8"(V—S). For a graph or di-
graph G and vector x: A—R, let 4,(X, Y) denote the sum Y (x(a): a€E A, one
end of a is in X — Y, the other end is in ¥ — X). When x =1 we use d(X, Y) for
d (X,Y).

If it is not ambiguous we will use the notation e = uv for an edge with endpoints
« and v. Similarly e = (4, v) stands for an arc with tail u and head v. An edge wv
or an arc (i, v) is said to leave (enter) S if S is a ui-set (vit-set).

To complete this introductory section let us draw attention to some other
survey papers and books. Concerning connectivity two books of Tutte {1966,
1984) deserve special mentioning. Mader’s survey paper (1979) includes a long list
of connectivity results and their relationship. Bollobds™ (1978) book is also an
excellent reference that includes the proof of many difficult theorems.

As far as network flows are concerned the classical book of Ford and Fulkerson
(1962) is even today a refreshing reading. Recently, Ahuja et al. (1993) provided
a comprehensive book on network flow techniques. Another useful survey on
network flow theory, given by Goldberg et al. (1990), appeared in a book entitled
“Paths, Flows, and VLSI-Layout” (B. Korte et al., eds., Springer, 1990). This
book includes other important surveys concerning connectivity results. One of
them, due to A. Schrijver, is concerned with the homotopic paths packing
problem. The survey of N. Robertson and P.D. Seymour outlines the authors’
very complex disjoint paths method. A third survey paper from the same book,
written by the present author, provides an overview on packing paths, circuits,
and cuts.

*

2. Reachability

2.1. Paths and walks

In a graph by a walk W we mean an alternating sequence
(Uys €15 V15 €35 - . ., €, U, ) consisting of nodes and edges where e; is an edge
between v,_, to v,. The nodes v, and v, are called the endpoints of W. Sometimes
we say that W is a walk between v, and v, or that W is a walk from v, to v, (or
from v, to vy). In a digraph by a (directed) walk W we mean an alternating
sequence (vg, €4, Uy, €5, - . . , €, U, ) where ¢, is an arc from v;_; to v;. We say that
W is a walk from v, to v, or that v, is reachable from v, by W.

The following definitions concern both graphs and digraphs. The number k of
edges of a walk is called the length of the walk. The distance of ¢ from s is the
minimum length of a path from s to 7. Obviously, if W, is a walk (directed or
undirected) from « to v and W, is a walk from v to w, then the concatenation
W=W,W, is a walk from u to w.

We say that a walk is simple if all its defining terms are distinct. A simple walk
is called a path. A walk is called closed if its endpoints coincide. If otherwise the
terms of a closed walk are distinct, it is called a circuit.

Let W= (v,, e, . ..,€,v,) be a walk. Suppose that v, = v, for some i, j,0=<i<
j =<k, and the subsequence C= (v, €., ...,€,_,,V;) is a circuit. Reducing W by

Connectivity and network flows 115

circuit C means that we define a new walk W’ i= (vg, €,,. .., U5 €005 - - - 2 €4, Up).
Simplifying W means that one reduces W as long as possible. The final walk is a
path from v, to v, (that may depend on the order of reductions). Thus we have

the following.

Proposition 2.1. (a) In a graph if there is a walk between two nodes u and v, there
is a path between u and v.

(b) In a digraph if there is a directed walk from u to v, there is a directed path
from u to v,

Let us call two nodes of a graph G =(V, E) equivalent if there is a path
connecting them. This is an equivalence relation: from the definition of path it is
symmetric and reflexive, by Proposition 2.1 it is transitive. An equivalence class is
called a component of G. If G has exactly one equivalence class, G is called
connected. Equivalently, G is connected if there is a path between any two of its
nodes.

We call two nodes u and v of a digraph D = (V, A) equivalent if there is a
directed path from u to v and one from v to w. This is again an equivalence
relation. An equivalence class is called a strong component. H D has exactly one
equivalence class, D is called strongly connected. Equivalently, a digraph D is
strongly connected if there is a directed path from every node to any other.

Propesition 2.2. Let s and t be two specified nodes of a digraph D = (V, A). There
is a directed path from s to t if and only if for all st-sets S there is an edge leaving S.

Proof. The necessity is straightforward. The sufficiency follows by observing that,
if there is no path from s to ¢, the set § of nodes reachable from s has no leaving
edges. [

Let us introduce some further notions. An undirected graph is called a tree if it
is connected but deleting any of its edges disconnects the graph.

Proposition 2.3. For a graph G = (V, E)} the following are equivalent:

(@) G is a tree.

{(b) G is a connected graph containing no circuit.

(c) In G there is a unique path between any pair of nodes.

(d) G is connected and |E|=|V| - 1.

(e) G can be built up from any of its nodes by consecutively adjoining edges so
that one end of the currently added edge belongs to the graph having already been
constructed while the other endpoint does not.

A graph is called a forest if each of its components is a tree. A digraph
D =(V, A) is called an arborescence if D arises from a tree by orienting the edges
in such a way that every node but one has one entering arc. The exceptionai
node, called the root, has no entering arc. The union of node-disjoint arboresc-
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ences is called a branching. (Equivalently, a branching is a directed forest such
that the in-degree of each node is at most one.)

Proposition 2.4. For a digraph D the following are equivalent:

{a) D is an arborescence.

(b) D contains a node r such that every node can be reached from r by a unique
path.

(¢} D contains a node r such that every node can be reached from r and deleting
any edge yields a node that is not reachable from r.

(d) D can be built from a node r by adjoining sequentially arcs so that the tail of
the currently added new arc belongs to the digraph having already been constructed
while the head is a new node.

Let D =(V, A) be a digraph with a specified node 5. We describe now a simple
device, the labeling technique, to determine the set S of nodes reachable from s
along with a sub-arborescence of D rooted at 5 that spans S.

We use a label called R-label for every node v showing if v has already been
reached or not. If not, the label has entry “NON-REACHED”. If v is reached its
R-label says REACHED and contains the arc (i, v) € A along which v has been
reached. The only exception is the source node s: the entry of its label is always

REACHED. At the beginning every node but s has NON-REACHED in its

R-label.

We also use another label called S-label for every node to indicate whether v js
SCANNED or UNSCANNED.

At the beginning of the algorithm for every node the entry of every S-label is
UNSCANNED. In a general step we pick up an unscanned node u that has
already been reached (at the beginning only the source is such) and decide if there
is a non-reached node v such that (&, v) is an arc of D. If there is none, declare u
SCANNED and repeat. Otherwise declare v REACHED and put (4, v) into its
R-label and repeat.

The algorithm terminates if there is no more unscanned node which is reached.

Proposition 2.5. The set S of nodes that have REACHED in their R-label has no
leaving arcs and consists precisely of nodes reachable from s. The set of arcs
occurring in their R-labels forms an arborescence rooted at s with node set §.

Note that the procedure can be applied to undirected graphs as well. In the
algorithm there is much freedom in choosing a reached and unscanned node. One
possible strategy is to choose each time an unscanned node u which has been
reached earliest. In this case the procedure is called breadth first search (BFS).

An application of BFS is to compute the distance of the nodes in § from s. The
only modification in the above algorithm is that we need a third variable dist(v) at
every node v to store the distance of v from s. At the beginning this is 0 at s and
o at all other nodes. When a node v is reached from u we define dist{v) to be
dist(u) + 1.
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Ancther natural strategy is to choose each time an unscanned node that has
been reached latest. In this case the procedure is called depth first search (DFS).
Depth first search has a great number of important applications and we will
mention three of them in the next section.

Finally, we mention a third kind of search, the so-called maximum cardinality
search. Here cach time an unscanned node is chosen that has a maximum number
of already reached neighbours. This search was introduced by Tarjan and
Yannakakis (1984) in order to find a simplicial ordering of the :oaom oﬂ.u chordal
graph. Nagamochi and Ibaraki (1992) showed how maximum cardinality search
can be used to find a sparse k-connected subgraph of a k-connected graph.

We remark that it is not difficult to implement these search procedures so as to
run in linear-time. (For details, see Tarjan 1983.)

2.2. 2-Connectivity and strong connectivity

Given a graph or digraph G=(V, E), anode v &€ V is called a cut node if E can be
partitioned into two non-empty subscts E, and E, such that V(E,) and «.Am..mv have
just the node v in common. (For FCE, V(F) denotes the set of nodes incident to
at least one element of F.) In particular, a node incident to a loop and to E._oz..an
edge is a cut node. If G is loopless, then v is a cut node if and only if its deletion
increases the number of components: ¢(G — v) > ¢(G).

A connected graph is called a block if it has no cut node. A graph is called
2-connected if it is a block and has at least three nodes.

Proposition 2.6. For a Iloopless graph G =(V, E) with |V|=3 the following are
equivalent:

(a) G is 2-connected.

(b) For any two nodes there is a circuit containing them. o

(¢) For any two sets A, BCV with |A|, |B|>2 there are two disjoint paths
connecting nodes of A and B.

(d) Any pair of edges is contained in a circuif.

(€) G can be built up from a circuit by sequentially adjoining edges (loops are
not allowed) and subdividing edges (in any order).

The following is a useful reduction property of 2-connected graphs.

Proposition 2.7. For every edge e of a 2-connected graph with at least four nodes
either the deletion or the contraction of e resulls in a 2-connected graph.

(Contracting an edge uv means that we identify « and v into a new node z and
for each edge uw or vw of G we introduce an edge zw. Deleting an cdge e =uv

means that we leave out e from E.) .
A strongly connected digraph with at least three nodes is called a strong block if

it has no cut node.
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Proposition 2.8. For a digraph D = (V, A) with [V|=3 the following are equiva-
lent:

(@) D is a strong block.

(b) D can be built up from a directed circuit by sequentially adding arcs (no
loops allowed) and subdividing arcs.

Subdividing an arc (u, v) means that we replace (i, v) by a path P from u to v
where the inner nodes of P are new nodes of the graph.

(Note that it is not true that every pair of nodes of a strong block lies on a
directed circuit.)

Let G =(V, E) be a connected but not necessarily 2-connected graph. A block
of graph G is a subgraph that is a block and is maximal with respect to this
property. The blocks of G form a tree-like structure in the following sense. Let
By, By, ..., B, be the blocks of G. Form a bipartite graph T = (V, B; F) where
the elements of B={b,,b,,...,b,} correspond to the blocks of G. In T let
nodes v; and ; be connected by an edge if v, € B, .

Proposition 2.9. The blocks of a graph G =(V, E) partition the set E of edges.
Two edges belong to the same block if and only if there is a circuit containing both.
Any two blocks have at most one node in common and the nodes belonging fo
more than one block are cut nodes. The graph T=(V, B; F) is a tree.

We call an edge e of a graph G = (V, E) a cut edge or an isthmus if G — e has
more components than G. A connected graph is called 2-edge connected if it
contains no cut edges. :

Proposition 2.10. For a connected graph G = (V, E) the following are equivalent:
(a) G is 2-edge-connected.
(b) For any pair of nodes there are two edge-disjoint paths connecting them.
(c) Any edge is contained in a circuir.
(d) G can be built up from a node by sequentially adjoining edges (loops are
allowed) and subdividing edges.

Property (d) is sometimes formulated in another way. By an ear-decomposition
of G we mean a sequence G,, G,,...,G,=G of subgraphs of G where G,
consists of one node and no edge, and each G, arises from G,_, by adding a path
P; for which the two (not necessarily distinct) end-nodes belong to G,_, while the
inner nodes of P; do not. The paths P, are called ears. (P, may consist of a single
edge). Now (d) is equivalent to saying that a graph is 2-edge-connected if and
only if it has an ear-decomposition. There are several other ear-decomposition
theorems. One is mentioned in the next proposition. Another asserts that a graph
is 2-connected if and only if there is an ear-decomposition using only open ears.
Yet another (due to L. Lovész) says that a graph is factor-critical if and only if
there is an ear-decomposition using only ears of odd length. (See the chapter on
matchings by W. Pulleyblank.)
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Proposition 2.11. Let D =(V, A) be a digraph whose underlying graph is con-

nected. The following are equivalent:
(@) D is strongly connected. . .
(b) There is at least one arc leaving each set X C V(D), X # B, that is, there is no

directed cut.
(c) Every arc is in a directed circuit. .
(d) D can be built up from a node by sequentially adding arcs (loops are

allowed) and subdividing arcs.

i i i d. Let

Let D=(V,A) be a digraph whose underlying graph is connecte
C,,Cy, . . ., C, be maximal strongly connected subgraphs o.m D. These uc_umHmmrm
are called the strong components of G. The name is justified by the following

proposition.

Proposition 2.12. The node sets V(C;) (i=1,... ,C .woqu a partition of V. By
contracting each C, into a node one obtains an acyclic digraph.

Using depth first search, both the blocks of an :w&anoﬂ.aa graph .msa the strong
components of a directed graph can be found in linear time {Tarjan 1972).

Propositions 2.10 and 2.11 indicate that the m:w.Ommu_.Hm concepts for graphs and
digraphs are 2-edge-connectivity and strong connectivity. Actually, parts (d) of
these propositions immediately imply a theorem of Robbins (1939).

Corollary 2.13. A graph G has a strongly connected orientation if and only G is
2-edge-connected.

Here we provide another proof of this result that gives risc to a linear E:n
algorithm (Tarjan 1972). Let s be an arbitrary node of G. Let T be a spanning
tree determined by depth first search. Define an arborescence F by orienting the

edges of T away from s.

Claim. The unique path in T connecting the endpoints of any edge e = uv € E-T
is a directed path P, in F.

The orientation of G obtained by orienting each edge ¢ € E — T so as to form a

directed circuit with P, is strongly connected. .
The following slight extension of Corollary 2.13 also holds (Boesch and Tindell

1980).

Theorem 2.13a. The undirected edges of a mixed graph G (i.e., a graph wasuaw
directed and undirected edges) can be oriented in such a way that the R.E.&Sw
digraph is strongly connected if and only if there is no cut edge in G and there is no

directed cut.

Corollary 2.13 naturally gives rise to the following question. Given a digraph
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D = (V, A), what is the minimum number of arcs the reversal of which makes D
strongly connected? We must require that the underlying graph of D is 2-edge-
connected. Obviously, the required subset of arcs meets all the directed cuts.
Conversely, from Theorem 2.13a one can derive the following.

Proposition 2.14. If F is a minimal set of edges covering all the directed cuts, the
reversal of the elements of F leaves a strongly connected digraph.

,;onomo.nm the following deep theorem of Lucchesi and Younger (1978) answers
the question above. (For a relatively simple proof, see Lovisz 1976b, for a
constructive proof yielding a polynomial-time algorithm, see Frank 1981.)

._.._-8-65 2.15 ?.:onrna and Younger 1978). Let D =(V, A) be an arbitrary
&mﬁ.er. The minimum number of arcs covering all the directed cuts is equal to the
maximum number of pairwise disjoint directed cuts,

3. Directed walks and paths of minimum cost

3.1. Walks and paths

Throughout this section we use the terms walk, path, circuit to mean diwalk,

dipath, dicircuit, respectively. The length of a path is the number of edges of the -

path. Let D = (V, A) be a loop-free digraph on n nodes and s and ¢ two specified
nodes called source and sink, respectively. Given a cost function c: A— R, find a
path from 5 to ¢ of minimum cost. Here the cost ¢(P) of a path P is the sum of the
cost of its arcs. A path is called a min-cost path if it has minimum cost among the
paths from its origin to its terminus.

In ﬁ._.:m section we survey this problem and its variants. (For more detailed
m:.m_wm_m, see Lawler 1976 and Tarjan 1983.) It turns out that computing one
min-cost path from s to ¢ is not simpler than computing a min-cost path from s to
every other node reachable from s. So we focus mainly on that problem. We are
going to desctibe several algorithms but the emphasis will be put on ideas and we
do not seek for finding the most efficient procedures. The complexity of an
algorithm heavily depends on the representation of the problem and the data
structure used.

Let .:ﬁ& denote the minimum cost of a walk of length at most &k from s to v, If
there is no such a walk, let w (v):=c. We will assume that each node of D is
reachable from s. The following recursion is straightforward.

Proposition 3.1. w,,,(v) = min(w,(v), min(w,(u) + c(u, v): (4, v) E A)) for v EV.,

ﬁ._._o. minimum taken over the empty set is defined to be ®.)

Relying on this proposition one can easily design an O(k|A|) algorithm to
compute w,(v) for v EV as well as a walk W, (v) from s to v of length at most k
with cost w,(v).
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To outline this let us assume for convenience that for every node vEV —s
there is an arc (s,v). If this is not the case, add a new arc e = (5,v) with
c(s,v) =o. At the beginning let w,(v):=c(s,v) for veV—s and w(s)=0.
Furthermore, let W, () = {s, (s,v),v)} for vEV—s and W(s):=(s}. In the
(k + 1)th phase of the algorithm w;;(v) and W, () is computed with the help

of the formula in the proposition.

What about minimum cost paths? If the cost function c is arbitrary, there is no
hope for a good algorithm since the problem of finding a longest path from s to ¢
is NP-complete and that problem can be formulated as a minimum cost path
problem by choosing c(e) = —1 for every arc e.

Therefore it would be natural to suppose that ¢ = 0. However, not everything is
lost if we do not require that much. The minimum cost path problem is tractable
under the weaker assumption that there are no circuits of negative total cost (or,
shortly, negative circuit). In particular, in acyclic digraphs the min-cost paths can
be computed in polynomial time for arbitrary cost functions.

We call a cost-function ¢ conservative if there is no directed circuit with negative
total weight. A function : V— R is called a feasible potential (subject to c) if
w(v) — w(u) < c(u, v) for every arc (u,v) € A.

Theorem 3.2. Given a digraph D =(V, A) and a cost-function c:A—R, ¢ s
conservative if and only if there is a feasible potential. The potential can be chosen
integer-valued if ¢ is integer-valued.

Proof. Suppose first that = is a feasible potential and C=
(Vo E1, V1, €35 -+, €, U, =0y) is an arbitrary circuit. Then we have ¢(C)=
Y cle)= X [wl(v) — mlv,_1)]=0.

Conversely, suppose that there is no negative circuit. We can assume that there
is a node s from which every other node is reachable. For otherwise adjoin a new
node s to D and an arc (s, v) for each v € V. Define the cost of the new arcs to be
0. Since there is no circuit containing the new node, the extended digraph
contains no negative circuit.

We claim that 7(v) :=w,(v) (where n=V|) is a feasible potential. Indeed, if
there is no negative circuit, then w,(v) can be realized by a path P, which has at
most n — 1 arcs. Then =(u) + c(u, v) = c(P,) + c(u, v) = =(v). U

Let p,(v) denote the minimum cost of a path of length at most k from s to v.
Obviously, p,(v) is the minimum cost of a path from s to v. The preceding proof
also shows the following.

Proposition 3.3. If none of the walks W, (v) (v €V') induces a negative circuit, then
there is no negative circuit in D, i.e., ¢ is conservative.

Since for a node v €V simplifying W, (v) can easily be carried out (in linear
time) we have obtained an algorithm, due to Bellman (1958) and Ford (1956),
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that either finds a negative circuit or computes a min-cost path from s to every
other node v. The complexity of the algorithm is O(|4||V]).

In section 5 we will make use of the following problem, also interesting for its
own sake. Suppose that there are negative circuits in a digraph D = (V, A) and we
want to eliminate all of the negative circuits by increasing the cost of every edge
by the same value & so that £ is as small as possible. It is an easy exercise to see
that ¢ has the following interpretation: —¢ is the minimum circuit mean. (The
mean of a circuit C is ¢(C)/|C|.)

To compute € revise the algorithm mentioned after Proposition 3.1 as follows.
Whenever a negative circuit C is detected by the algorithm, compute the current
mean cost £" of C and update the cost function by increasing the cost of each arc
by |£’|. Obviously C becomes a circuit of zero cost. The algorithm halts at the nth
stage when there is no more circuit of negative (current) cost. One can see that
the minimal ¢ is the sum of increments of costs and that a circuit C that became of
zero cost last has the minimum mean cost. (See Karp 1978.)

Next we list some basic properties of minimum cost paths. For convenience, let
us assume that every node of D can be reached from a specified node s.

Proposition 3.4. Suppose that c¢ is conservative. If P=(s=vye,,..., ¢,
Uiy oo« 1€, Upn ..., 1) is a min-cost path from s to 1, then a subpath R=

(i - -.,€,Y;) is a min-cost path from v, to v,. (Note that the 84&@0:&3@

statement for undirected graphs does not hold.)

Proof. Let R’ be a path from v, to v, for which ¢(R') <¢(R). Construct a walk W
by replacing the segment R in P by R’ and let P’ be a path obtained by
simplifying W. Since there is no negative circuit we have c(P' ) <c(W)<c¢(P). O

Theorem 3.5. If c is conservative, the minimum cost of a path from s to t is equal
to max(w(t) — w(s): = a feasible potential).

Proof. Let P=(s=v,,...,v,=t) be a path from s to t and 7 a feasible
potential. Then (*) c(P)= ¥ (c(v,_,,v):i=1,..., k)= L (=) - wlv,_,):i=
1,...,k)=m(t) — w(s) and so max < min.

To see the other direction let p,(v) denote the mitimum cost of a path from s
to v. We have seen that p, is a feasible potential. Since p,(t) — p,(s) = p,.(¢) = c(P)
we have equality in (*). O

For a feasible potential = we say an arc (4,v) to be tight if w(v) — w(u) =
c(u,v). By Theorem 3.5 a path P is a min-cost path if and only if there is a
feasible potential # such that P consists of arcs which are tight with respect to .

A min-cost-path s-arborescence F is an arborescence of D rooted at s for which
the unique path in F from s to any other node v is a minimum cost path in D.

Proposition 3.6. If there is no negative circuif, there is a spanning min-cost-path
s-arborescence.
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Proof. Let L be the union of arcs belonging to any min-cost ?.:r starting m.,o_d s,
The arcs in L are tight with respect to p, and L contains a spanning s$-

arborescence. O

Proposition 3.7. A spanning s-arborescence F is a min-cost-path s-arborescence if
and only if ¢ (v) — c-{u) < c(u, v) for every (u, v) € A (c(v) denotes the cost of the
unique path in F from s to v).

Above we outlined a method of complexity O(|A|[V]) to decide if a cost
function ¢ is conservative and, if so, to compute a min-cost-path ummn_uo_dmnnuna.
It is not known whether there is a method of complexity O(}V|?). There are,
however, two special cases when such an algorithm exists.

3.2. Non-negative costs and acyclic digraphs

Assume the cost function ¢ is non-negative. We briefly summarize Dijkstra’s
(1959) method. The basic observation is the following.

Lemma 3.8. If T is a min-cost-path s-arborescence (not necessarily spanning) and
m,. = min(p,(®) + c(y, v): (4, v) € AY(V(T)) is attained at an arc a = (u,, v,), then
T + a is a min-cost-path s-arborescence.

Proof. Let P, denote the path obtained from the path in T from s to u, by adding
a. Let P be any path from s to v, and e = u v, the first arc on P that leaves ﬂﬁu.
Since ¢ =0, c(P') < c(P) where P’ is the subpath of P from s to v,. By the choice
of a, o(P,) <c(P") so P, is a min-cost path. U

Dijkstra’s method 3.9 consists of # — 1 phases. Starting at s we build up, arc by
arc, a min-cost-path s-arborescence T. In order to compute my in.Em::mE a
label iw) = min(p, () + c(u, v): (1, v) €A™ (V) for v €V —V(T). This label tells
us which arc a=(u,,v,) has to be added to the current T. &:ﬁu an arc
a = (u,,v,) has been added to 7, label I(v) is updated by I(v):= :.::Q?.V_ Iv,)+
¢(v,, v)). Thus updating all {v}) needs O(n) time and the overall complexity of the
algorithm is O(n®).

As an application, let us return for a moment to the .mouanmm case m.&n: ¢ may
not be non-negative but there is no negative circuit. U:Wmﬁm.m m_moﬂ.EB can be
used to show that there is an O(n’) algorithm for computing a min-cost-path
s-arborescence provided that a feasible potential 7 is available. Indeed, define

c'(u, v) :=c(u, v) — w(v) + w(u).

Claim 3.10. A path P from s to t is a min-cost path with respect to ¢ if and only if
P is a min-cost path with respect fo c’.

Proof. For any path R from s to ¢ the difference ¢(R) — c'(R) = w(t) — w(s) does
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Therefore one can apply Dijkstra’s algorithm to c’.

Another important special case when an O(r”) algorithm is available is the one
of acyclic digraphs. We can suppose again that every node is reachable from s.
The following slight modification of Dijkstra’s algorithm works.

Lemma 3.11. Let T be a min-cost-path s-arborescence and v €V~ V(T) such that
AT@W)CAT(V(T)). If mp(v) :=min(p,(u) + c(u, v): (u,v) EA*(V(T)) is attained
at an arc e, then T + e is a min-cost-path s-arborescence.

The proof is straightforward. To implement the algorithm one has to find an
ordering v, =s, v, . .., v, of the nodes such that (v,, v;) can be an arc only if i <
and then build the s-arborescence along this ordering. (Using depth first search
such an ordering can easily be found in O(|E|) time.)

This algorithm enables us to find a maximum path in an acyclic digraph, in
particular, a maximum weight chain in a weighted poset.

3.3. Shortest paths in undirected graphs

Finally, we are interested in finding a min-cost path between two nodes s and ¢ of
an undirected graph G=(V,E). If the cost function ¢ is non-negative, the
min-cost path problem can easily be reduced to the directed case by replacing
each edge by a pair of oppositely directed arcs. This reduction, however, does not
work in the general case, even if there is no negative circuit, since then we wonld
introduce a negative (2-clement) circuit. To overcome this difficulty one has to
invoke matching theory, in particular, the theory of T-joins. .

Let E":={e€ E: w(e)<0}. Let T, := {v €V: an odd number of edges from
E" is incident to v} and T:={s,#}®T, where @ denotes the symmetric
difference. Define w'(e) := |w(e)| for each e € E. If there is no circuit of negative
w-cost, then, for any T-join F of minimum w’-cost, F&® E~ consists of an st-path
of minimum w-cost and some disjoint circuit of zero w-cost. Therefore in order to
compute a min-cost st-path it suffices to compute F. This, in turn, can be done
with the help of a weighted matching algorithm. (While solving the min-cost path
problem for directed graphs was not too difficult, one may be wondering if it is
indeed necessary to invoke such a sophisticated tool, the matching algorithm, for
solving the minimum cost path problem in undirected graphs. However this is not
surprising anymore once on¢ observes that an algorithm solving the latter
problem can easily be used to compute a minimum weight perfect matching.)

For the structure of distances, see Sebd (1993).

4. Circulations and flows

4.1. Feasible circulations and maximum flows

In the theory of network flows there are several models which are, on one hand,
equivalent via elementary constructions. On the other hand, for different type of
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ications it is convenient to have various models. We are going to survey the
w%w__wm”“muamo”a% omoim from a source to a sink and .o#n:.mao:m. Eﬁowmr
historically flows came earlier here we start with circulations. For more a.oﬁm:_oa
network flow theory, see Ford and Fulkerson (1962), F.mi_n_. (1976), Phillips and
Garcia-Diaz (1981), Lovész and Plummer (1986), Ahuja et al. (1993), Goldberg

. (1990).
“ .w":.nm:mrovﬁ this section we work with a digraph D = (V, \.c. Let f Calvmc
{—=} be a lower capacity, g:A—>RU {+=} an upper capacity such that f=g.
For a vector x: A—R and a subset SCV let §, A..wu =Y, OA:., v): ?..cv.mb,
(u, v) enters S) and let 8 (5):=8,(V—§). Vector x is nw:oa a circulation _m. the
conservation rule 8 7 (v) =38 (v) holds at every node v. .: is nmm__w seen that , given
a circulation x, 8, (X)=8;(X) for all XCV. A circulation x is feasible if

f=x=g.
Theorem 4.1 (Hoffman 1960). There exists a feasible circulation if and only if
(4.1)

If f and g are integer-valued and (4.1) holds, there is an integer-valued feasible
circulation.

8;(X)<8;(X) foreveryXCV.

Proof. Necessity. If x is a feasible circulation, then 8, (X)—8;(X)=8 X)) -
8, (X)=0 and (4.1) follows. ‘ .
.M:\.,.ang@. Let y(X):=8,(X) — 8 (X). Then (4.1) is equivalent to y(X) = 0.

Lemma 4.2. y(X)+¥Y)=py(XNY)+yXUY)+ d,_(X,Y).
Proof. The contribution of any arc to the two sides is the same. O

Choose a counter-example for which the number g of arcs with %@ Amﬁn.v is
minimum. There is such an arc a = (5, ) since otherwise x := f(=g) is a mo.mm_c_n
circulation (by (4.1)). Modify f by increasing f(a) as much as vwmm_c_o without
violating {4.1). By the minimal choice of ¢ .z.a nmoa_moa w.mnv is still me:mn ﬁwmm:
g(a). Furthermore, there is a ¢§-set T for ir_nr.m (1) = 5, .ﬁJ. that is, i.u.v lr .
Similarly, reduce g(a) as much as possible without So—m.::m @.C. Again, t M
modified g(a) is bigger than (the modified) f(a) and there is an st-set S for whic

=0.
dA.W.wv.wﬁ::..ﬁ of arc a the value d,_ (S, T) is strictly positive. Thus, by Lemma 4.2
and by (4.1) we have 0+ 0=y(S) + y(T)>y(4 N H.v +y(SUT)=0+0, a con-
tradiction. The same proof shows that if f and g are integer-valued, then there is
an integer-valued feasible circulation. [

Let D = (V, A) be a digraph with a specified source s and sink t. We assume,
without restricting generality, that no arcs enter s and no arcs leave f. Let
g:A— R, be a capacity function that is positive everywhere. Avectorx: A—R,
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is called a flow from 5 to ¢, or an st-flow, if 8_(v)=8_ (v) holds for every
vEV-—{s,t}. A flow x is called feasible if 0=x=g.

It can easily be seen that for a flow x and for any st-set S the netflow leaving §
defined by 8. (5) — &8, (S) does not depend on the choice of S. This common
value 8 (s} is called the flow value of x and denoted by val(x). The value x(u, v),
(u,v) € A, is called the arc-flow. A flow x is called a path-flow if x is positive only
along a path from s to +.

The fundamental theorem of network flows, called the max-flow min-cut
{MFMC) theorem, is due to Ford and Fulkerson (1956) and to Elias et al. (1956).

Theorem 4.3. The maximum value of a feasible st-flow is the minimum of 8, (S)
over all st-sets S. If g is integer-valued, there is an integer-valued maximum flow.

Proof. Let x be a feasible st-flow and § an st-set. Then we have val(x) =8 (S) —
87(S)=8.(S) from which max < min follows. ’

To sce the other direction let m denote the minimum in question. Adjoin a new
arc e = (¢,5) to D and define f(e):= g(e) := m. Let f be zero on all old arcs. It is
easy to see that (4.1) holds for that choice of f and g so by Theorem (4.1) there is
a feasible circulation (integral if f and g are integral). This circulation, without the
new arc e, is an st-flow of value m. O

From the first part of the proof we see that an x is a maximum flow and 6 (S v
is of minimum if and only if 5

(@) x(a) = g(a) for every arc a leaving § and

(b) x{a) =0 for every arc a entering S.

These optimality criteria are crucial for the next algorithm due to Ford and
Fulkerson. This provides an algorithmic proof of Theorem 4.3 for the case when
the capacity function g is integer-valued (and thus, when g is rational). A
nn.msoannﬂ of that method, due to J. Edmonds and R. Karp and to E.A. Dinits,
will provide a strongly polynomial algorithm and an algorithmic proof for
arbitrary capacities.

4.2. Augmenting paths method

The algorithm of Ford and Fulkerson starts with an arbitrary feasible si-flow x
(for example x = 0) and iteratively improves it. To describe one iteration let x be
a feasible st-flow. Construct an auxiliary digraph D, =(V, A ) as follows. An arc
(u, v) belongs to A, if either (i) (u, v) € A and x(u, v) < g{u, v) and then this arc
of D, is called a forward arc, or (ii) (v, u) € A and x(v, u) > 0 and then (u,v) is a
backward arc.

Let § denote the set of nodes reachable from s in D,.

Case 1: t£S. Since no arc of D, leaves S, optimality criteria (a} and (b) hold
and the algorithm terminates.

Case 2: t€S. Let P be any path in D_ from s to ¢.

Let 4;:=min(g(u,v) — x(u,v): (u,v) is a forward arc of P) and 4,=
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min(x(v, u): (1, v) is a backward arc of P). Let A=min(4,,4,). Then A is
positive. Call an arc of P critical if A is attained at that arc.

Update x as follows. If (#,v) is a forward arc of P, increase x(u,v) by A. If
(u,v) is a backward arc of P, decrease x(v, u) by 4. An easy consideration shows
that the revised x' is a feasible st-flow with val(x’) = val(x) + 4. Consequently, if g
is integer-valued case 2 can occur only finitely many times.

In case of rational g we can easily reduce the problem by multiplying through
the components of g by the least common denominator. When g is irrational, the
algorithm above may not terminate. An example to show this pathological
situation is given in Ford and Fulkerson (1962) (a simpler one occurs in Lovdsz
and Plummer 1986). Another drawback of the algorithm is that even for integer
capacities the number of iterations may be proportional to the largest occurring
capacity M, as the following example shows, see fig. 4.1.

If among the possible augmenting paths we always choose the one of three arcs,
then the flow augmentation 4 is just one in every step. Therefore the complexity
of the algorithm is exponential in log M, the size of the input.

4.3. The method of Edmonds, Karp and Dinits

To overcome these difficultics Edmonds and Karp (1972) and Dinits (1970)
proposed to choose a shortest augmenting path at each iteration. This simple
modification makes it possible to bound the number of iterations in the Ford—
Fulkerson algorithm by a polynomial of |V| and |A|, irrespective of the capacities.

Let o, (v) denote the distance of v from s in D,. (If there is no path from s to v,
then o,(v) = ). Let P be a shortest path in D, from s to #. Then for any arc (u, v)

of P, o (v)=a,{u)+1.
Lemma 4.8. Performing an augmentation along P does not decrease o,(v).

Proof. Let us consider how an augmentation affects D,. Since the flow has been
changed only at the arcs of D corresponding to the arcs of P, D, may be changed
at the arcs of P. Namely, the (possibly) new arcs of D are the arcs of P in
reverse orientation {while the critical arcs of P disappear). The distance of a node
v from s could decrease only if we adjoin an arc (&, w) for which o, (W) > o, (1) +1
and the lemma follows. O

The sequence of augmentations can be divided into phases. In one phase o,(f)
remains the same. By Lemma 4.4 there may be at most [V| — 1 phases.

Figure 4.1.
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Lemma 4.5. Within one phase at most |A| augmentations may occur.

Proof. Let o,(v) denote the distance of v from s in the auxiliary digraph at the
beginning of a given phase /. Call an arc (i, v} i-tight if o,(v) = o,(u) + 1. Within
phase { only i-tight arcs may be used. By Lemma 4.4 an augmentation eliminates
at least one i-tight arc from the current auxiliary digraph and no new i-tight arc
arises. Since an auxiliary digraph may have at most JA| arcs, the lemma
follows. O

By Lemma 4.5 the algorithm needs at most |V||A| augmentations. One
m:mBmEm:on can be performed in Q(|V]) time so the overall complexity is
o([vI* 1AD.

Remark. The original augmenting paths method leaves freedom in choosing
augmenting paths, The modification above imposes certain restrictions but still
the algorithmm may have different runs and, as a result, it may end up with
different maximum flows. The final minimum cut & *(S), however, provided by
the augmenting paths method is independent of the run of the algorithm. It is
easy to show that if both X and ¥ minimize § M (Z) over st-sets, then both XNY
and XUY are minimizing sf-sets and therefore there is a unique minimal
minimizing set S. The augmenting path method ends up with this S.

Since the algorithm of Edmonds, Karp and Dinits quite a few improvements on
the complexity of max-flow min-cut algorithms have been devised. See Cherkas-
skij (1977a), Malhotra et al. (1978), Galil (1980), Shiloach (1978), Sleator (1980).

Max-flow algorithms using augmenting paths have the characteristic feature that
the current flow is always changed in a “big piece™: along all the edges of an
augmenting path. An important conceptional development was the introduction
of preflows by Karzanov (1974). A preflow is a non-negative function x on the
edges of a digraph so that 6 [ (v) =48 (v) holds for every node v distinct from the
source. A preflow-push algorithm changes the current preflow each time along
just one edge. This is the basis of the greater flexibility and efficiency of
preflow-push algorithms. See Shiloach and Vishkin (1982), Goldberg and Tarjan
(1986}, Cheriyan and Maheshwari (1989). Alon (1990) described a deterministic
version of a randomized algorithm of Cheriyan and Hagerup (1990) whose
complexity is O(nm log n)

The interested reader may find a much more detailed comparison of the
max-flow algorithms in the survey paper of Goldberg et al. (1990) and in the
textbook of Ahuja et al. (1993).

4.4. Finding feasible circulations

We have seen how the max-flow min-cut theorem could be derived from
Hoffman’s circulation theorem. We show now the reverse direction. This way we
will have a tool by which a feasible circulation can be found (or a set violating
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(4.1)) with the help of one max-flow min-cut computation (on a slightly larger
digraph). . .

For simplicity we restrict ourselves to finite f and g Q_._o general case is left to
the reader). For v €V denote y{(v) =8 (v) — 8 _w (v). If y is zero everywhere, then
f is a feasible circulation. Otherwise, the sets § = (v:y(v)>0)and T= Acw y(v) <
0) are non-empty. Let D'=(V', A") where V'=VU{s,t} and m,_r = \__.C
(s,v):v ESU((v, 1): v € T). Define a capacity function g’ as follows. g (s,v):=
yv) if vE€S, g',t)=—y@) if vET and g'(@)=gla)—fla) if a€A. Let
M=Y (y(v):vES).

Lemma 4.6. (a) x is an st-flow of value M in D’ (with respect to g") if and only if

f + x (restricted circulation). .
(b) A set X CV violates (4.1) if and only if S, (X +s)<M.

4.5. Other models and applications

Via elementary constructions flows and circulations mnn.on_._?m_oa. There are
other, more sophisticated variants. For example, one can 1mpose lower bound on
the arc-flows in the maximum flow problem. Or, lower and upper bounds can be
requested on the in-flows (5, (v)) at nodes. Moreover, Emﬂou@ of one source m:.a
one sink multiple sources and sinks can be specified. This mn:nna_mmn.o: is
sometimes called a transshipment problem. The transportation problem nonm_mﬁm.om
finding a minimum cost degree-constrained subgraph of a bipartite graph. With
relatively simple elementary constructions all these models go back to flows or
circulations. We refer to the classical book of Ford and Fulkerson (1962).

Next, we are going to survey some of the combinatorial consequences of the

flow theory.

Theorem 4.7 (Menger’s theorem arc-version). Let D = Q\,. mc. be a digraph with
two specified nodes s and t. The maximum number of arc-disjoint paths from s to
is the minimum of 87 (S) over all st-sets S.

Proof. Apply Theorem 4.3 with g =1 and notice that every flow from s to ¢ is the
sum of path-flows from s to ¢ and a non-negative circulation. [

In section 7 some other versions of Menger’s theorem will be discussed.

Theorem 4.8 (Konig 1915). The maximum number of disjoint edges of a bipartite
graph G = (V,,V,; E) is the minimum number of nodes covering all the edges.

Proof. Orient the edges of G from V, to V,. Then extend G by two new nodes s
and ¢ and new arcs (s,v) (v €V,) and (v, 1)(v EV,). Let the capacities of all the
new arcs be 1 and the other capacities M, a big number. A maximum ,ﬁ?no.i of
value k corresponds to k independent edges of G. By Theorem 4.7 there is an
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sf-set § for which & M {(S)=k. No arc of capacity M can leave § therefore
(V,—S)u(V,N3) is a covering of E with cardinality 2. O

4.6. Gomory—Hu trees

In many applications the ability to compute the minimum cut separating two
nodes is more important than finding a maximum flow. In undirected graphs the
minimum cuts separating every pair of nodes has an especially attractive
structure.

Let G =(V, E) be a connected undirected graph and g: E— R, a non-negative
capacity function. Let A(u, v) denote the maximum flow value between u and v.
We say that a set Z separating u and v is uv-minimal if d,(Z) is minimal over all
subsets separating u and v. Equivalently, d,(Z) = A(«, v}.

A set X is called critical if X is wv-minimal for some u and v. In order to have
some insight into the structure of critical sets, one may be interested in a list of
critical sets that contains a uv-minimal set for each pair 1, v. How short can this
list be? By choosing a separate uv-minimal set for each pair there is a list of
n(n —1)/2 sets. But one can do much better.

Let G, = (V, F) be any tree on node set V (not necessarily a subgraph of G).
For every edge e in F let m(e):=d, (X,) where X, and V- X, are the two
components of G, —e. Gy is called a Gomory-Hu free of G (with respect to the
given capacity function g) if (a) for every pair {s,¢} of nodes A(s,?) is the
minimum of m-values over the edges of the unique path in G, connecting s and ¢
and (b) if e is an edge where the minimum is attained, then X, is st-minimal.

For example, if G =K, , and g =1, then a star of five edges forms a Gomory-
Hu tree (and there is no other one showing that a Gomory—Hu tree cannot be
chosen, in general, as a subgraph of G).

Theorem 4.9 (Gomory and Hu 1961). Every graph possesses a Gomory—Hu tree.

We are going to consider only the case g=1. For general g the proof goes
along the same line. We need the following terminology. A family F of subsets of
nodes is called laminar if for any two non-disjoint members of & one of them
includes the other. We say that & separates nodes u and v if at least one member
of F separates u and v.

Let #F be a laminar family and {u, v} a pair of nodes not separated by F. We
say that a subset X of nodes separating u and v is uv-minimal with respect to F if
F U {X7} is laminar and d(X) is as small as possible. Note that such an X can be
computed by one MFMC computation in a graph obtained from G by contracting
the complement of the smallest member X of ¥ containing u and v and
contracting the maximal members of ¥ included in X.

Proof. Let us construct a laminar family F of n — 1 sets as follows. Let %, be
empty. Suppose we have constructed a laminar family %, _, ={A,,...,4,_,}
for some k=1,...,n—1. Let {u,,v,} be any pair of nodes not separated by
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#,_,. Determine a set A, that is u,v,-minimal with respect to %,_; and let
F.=F._ U{A,}. .

Let F:=%, ,. Let E;:={up;:i=1,...,n~1}. From the construction we

see that T, :=(V, E,) is a tree. (This is just an auxiliary tree for the proof.)
Claim 1. Let X be an xx'-minimal set and Y a critical set. If Y does not contain x
and x', then either X—Y or XUY is xx'-minimal. If Y contains x and x', then
either XNY or Y — X is xx'-minimal.
Proof. To prove the first statement suppose that ¥ is yy'-minimal. Then nmmro_.‘
Y — X or YN X separates {y, y'}. In the first case one has Alx, x") +.>C: y)=
dX)+d(¥)=dX - Y)+d(Y - X) = Alx, x") + A(Y, y'). Hence equality follows
everywhere showing that X — Y is xx'-minimal.

In the second case A(x,x'} + A(y, y') =d(X) +d(Y)=d(XUY)+ dxXny) =
A(x, x")+A(y, y'). Hence equality follows everywhere showing that XUY is
xx’-minimal, as required for the first statement. .

The second statement follows from the first one if we replace Y by its
complement. [J

Claim 2. A, € F is uv-minimal for each i=1,...,n—1.
Proof. The claim is clear for i = 1. Suppose we have already proved it for 1,
2,...,i—1 and let x:=u,, x':=v,. By induction on j=0,1,...,i—1 we are

going to show that (%) there is an xx'-minimal set X for which % U (X} is
laminar. From this the claim will clearly follow.

(*) obviously holds for j=0. Suppose we have already shown (*) F-. some
0=<j<i—1.Let X' be the xx"-minimal set assured by Claim 1 when applied to X
and Y:= A, Then % U {X'} is laminar, as required. O
Claim 3. For every pair {s,1} of nodes there is an st-minimal member of F.

Proof. Let P be the unique path in T, connecting s and ¢ and let M:=
min(A(g,, v;): »v; an edge of P). By the MFMC theorem Als,nN=M.

Let j be the smallest subscript for which wu, is an edge of P Eﬁ Ay, v) =M.
We claim that A; does not separate any other oam.o of P. Indeed, if A, separates
an edge uy, of P, then i<j by the construction .oﬁ. F. _usn.rwg.acun“ .E <
Au;, v,) <d(A;)=M and hence A(u,,v,) = M, contradicting the minimal choice of
! Therefore A; must separate {s, ¢} and hence we have M = A(w,,v,) =d(A;) =
A(s, ) = M. We can conclude that A, is an st-minimal set. |

Let Ay:=Vand &' := FU {V}. For each A, € F' the union of maximal sets nm
& included in A, is precisely one element smaller than A,. Let ¢, denote this
element and for i =1 let 5,:=1t; where A, is the unique B:,;Ew_ m_nao.a of &'
including A,. Let F':={(s,4):i=1,...,n—1}. Then G,= (V,F') is an ar-
borescence such that each arc of it enters one member of ¥. Let G denote the
underlying (undirected) tree. By this construction and by Claim 3, G, is a
Gomory-Hu tree. 0O

The following corollary, due to Padberg and Rao (1982), found a nice



132 A. Frank

application in a linear programming approach to matching problems. It basically
asserts that a Gomory-Hu tree encodes not only a minimum cut separating any
given pair of nodes but also a minimum 7T-cut for any even subset T of nodes.
{For the definition of T-cut and T-join, see the chapter on matchings.)

Corollary 4.10 (Padberg and Rao 1982). Let G, be a Gomory—Hu tree and T an
even subset of nodes. Then a minimum T-cut can be obtained by choosing an edge
e of G, for which the cut determined by the two components of G — e is a T-cut
and m(e) is as small as possible.

Proof. Let C be a minimum 7-cut and let 7 be the set of edges e of G for which
the cut C, determined by G —e is a T-cut. Clearly J is a T-join and therefore
there is an edge e=wwvECNJ. We have |C|=A(w,v)=mu,v)=|C,|=|C|
showing that C, is also a minimum T-cut. O

Another corollary states that if the degree of each node of a graph is at least %,
then there are two distinct nodes which are connected by at least k£ edge-disjoint
paths. Indeed, if # is a node having degree one in the Gomory—Hu tree and v is
its neighbour in the tree, then u and v will do.

5. Minimum cost circulations and flows

5.1. Min-cost circulations

In the previous section we got to know how to find feasible circulations. It is not a
less striking problem to find a possible circulation that minimizes a specified linear
cost function. To attack this problem let us consider the set Q of all feasible
circulations. { forms a polyhedron in R” called a circulation polyhedron and
denoted by C(D; f, g). (That is, C(D; f, ) ={xER":8_(v)=6}(v) for vEV
and f(u, v) <x(u, v) < g(u, v) for (u,v) € A}. Q is said to be integral if f and g are
integer-valued.

Theorem 4.1 implies that a (non-empty) integral circulation polyhedron
contains an integer point. Since the face of an (integral) circulation polyhedron is
obviously an (integral) circulation polyhedron, we have proved the following.

Theorem 5.1. Every face of an integral circulation polyhedron Q contains an
integer point.

Let @ = C(D; f, g) be a non-empty circulation polyhedron and c: A— R a cost
function. The cost cx of a circulation x is defined by X (x(a)c(a): a € A). What is
the minimum cost of a feasible circulation and when does this minimum exist?

Define a digraph D’ = (V, A’) and a cost function ¢’ on A’ as follows. An arc
(u, v) belongs to A’ if either (i} (v, ) € A and f{v, u) = —= or (ii} (4, v} E A and
glu, v) ==. In case (i) let ¢'(u, v) = —c(v, u), in case (ii) let c'(u, v) = c(u, v).
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Theorem 5.2. The following are equivalent:
(1a) There is a feasible circulation of minimum cost.
(1b) There is no negative circuit in D’ with respect to c'.
(1c) There is a potential w:V— R such that

(v) — w() <c(u,v) whenever (u,v) E A, glu,v) = (5.11)

and
w(v) — w(u) = c(u,v) whenever (u,v) € A, flu, v)=—. (5.1ii)

Note that a potential satisfying (1c) can be found (if one exists) by a min-cost

path computation.
How can we characterize optimal feasible circulations? For x € { define a

digraph D, = (V, A,) and a cost function ¢, as follows. Let an arc (1, v) belong to
A_ if either (i) (4, v) € A, x(u, v} < g(u, v) and then let ¢ (u, v) = c(u, v) (forward
arc of A,) or (i) (v.u) EA,x(v,u)>f(v,u) and then let ¢ (u,v)=—c(v,u)
(backward arc of A.).

Theorem 5.3. For a feasible circulation x the following are equivalent:
(2a) x is of minimum cost.
(2b) There is no negative circuit in D, with respect to c,.
(2c) There is a potential 7:V— R such that

w(w) — w(u) < clu,v) if x(u, v) <glu, v)((u,v) € A) (5.21)
and
w(v) — w(u) = c(u, v) if x(u, v) > flu, v)((u, v) E A). (5.2ii)
We call (5.2i) and (5.2ii) optimality criteria.

5.2. Min-cost circulation algorithm

The algorithm (Ford and Fulkerson 1962} starts with a feasible circulation x m:.a a
potential « satisfying (1c). If x and = satisfy (2c) as well, we are done. Otherwise,
let (¢,5) € A violate, say, (5.2i), that is x(t,s) <g(t,5) and a(s) ~ w(t) > c(t, 5).
(The case when an arc violates (5.2ii) is analogous.)

Define a digraph D, = (V, A,) and a capacity function g,: A, =R, as follows,
An arc (u,v) belongs to A, if either

(4,0) € A, m(v) — m(u) =c(u,v) and x(u,v) <glu,v) (31)
or
(v, W) EA, n(u) — m(v)<clo,u) and x(v,u)>flv,u). (3ii)

Let g (u,v) = glu, v) —x(u,v) in case (i) and g.(u,v) =x(v, &) — f(v, u) in case
(ii). Let M denote the maximum value of an st-flow and let 4 = min(M, g(¢, s} —
x(t, 5)). With the help of a max-flow min-cut computation determine an st-flow z
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of value A. Revise x as follows.
x'(u,v)=x(u,v)+4 if(u,v}isaforwardarcof D, ,
x'(u,v)=x(u,v)y— A4 if(v,u)isabackwardarcof D, .

Claim. x’ is a feasible circulation. An arc (1, v) € A satisfies (5.2i) and (5.2ii) with
respect to x' if it satisfies with respect fo x.

There may be two cases.

Case 1: val(z) = g(t,s) — x(t,5). In this case arc (t,5) no longer violates the
optimality criteria.

Case 2: M(=val(z)) <g(t,5) —x(t,5). Let § be the sf-set determined by the
max-flow min-cut computation. Let &, = min(c(u, v) = w(v) + w(1): (1, v) leaves
S, x(u,v)<g(u,v)). Let £, = min{(m{u) — w(v) + c(u, v): (u,v) enters S, x{u, v) >
F(u,v)). Define &€ = min(e,, &,) and revise 7 as follows: 7'(v) = w(v) + ¢ if v &S
and =w(v) ifvES.

Repeat the procedure with x' and ',

It can be shown that this algorithm is finite for any cost and capacity functions.
It is not necessarily of polynomial time, however, even if ¢, f, g are integer-
valued. We describe a machinery, the scaling technique, to make the above
algorithm of polynomial time. The method is due to Edmonds and Karp (1972).

5.3. Scaling technique

Suppose that the cost function ¢ is integer-valued and that a feasible circulation x

-and an integer-valued potential # satisfying the optimality criteria are available.
Let ¢’ be another cost function differing from ¢ on one arc by 1. The basic
o.cmoﬁw:o: is that the algorithm above finds in polynomial time a feasible
Bmos_wmon x' and an integer-valued potential =’ satisfying the optimality criteria
with respect to f, g, ¢’ provided that we start with the available x and ar. Indeed,
if case 2 occurs, then £ =1 and arc (¢, 5) violates no longer the optimality criteria.
In other words, with one max-flow min-cut computation (whether case 1 or case 2
occurs) the required x' and 7' can be obtained.

Consequently, if ¢” is an integer-valued cost function differing from ¢ on every
arc by at most one, then, starting with x and 7, at most |4| max-flow min-cut
nwaviwmonm yield an x" and #" satisfying the optimality criteria with respect to
¢

Another, trivial, observation is that if x and # satisfy the optimality criteria
with respect to ¢, then so do x and 2# with respect to 2c.

Assume now for convenience that ¢ is non-negative and let ¢ be given in binary
base. Let the maximum of c¢(a) have K digits. Then there are K 0-1 vectors
Corv++sCx_q in Z% such that c =, (2%¢;:i=0,...,K—1).

First solve the min-cost circulation problem for c,_,. This needs at most |A|
MFMC computations. Let the solution be x,_; and w,_,. Starting with x,_,,
27, _, solve the min-cost circulation problem for 2¢,_, + ¢4 _,. This also needs at
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most |A| MFMC computations. Continuing this way, after at most K|A|
applications of the MFMC algorithm, we obtain a feasible circulation x and a
potential 7 satisfying the optimality criteria with respect to .

Remark. Let us draw attention to a small technical difficulty which can, however,
be easily overcome: it may happen that there is a min-cost circulation with respect
to ¢ but there is none with respect to an intermediate cost function.

5.4. Strongly polynomial algorithm

Comparing the complexity of the scaling technique and the maximum flow
algorithm of Edmonds, Karp and Dinits there is a significant difference. Namely,
the complexity of the latter algorithm does not depend on the magnitude of the
numbers (if we assume that adding and comparing two numbers is one step) and
in this sense this algorithm is “strongly” polynomial while the complexity of the
scaling technique is proportional to the number of digits.

Tardos (1985) was the first who constructed a strongly polynomial algorithm for
finding a min-cost circulation. Since her work many other strongly polynomial
algorithms have been developed. The fastest one is due to Orlin (1988). Here we
briefly outline the algorithm of Goldberg and Tarjan (1989) that seems to be
conceptionally the most attractive.

Optimality criterion (2b) suggests the following procedure. Start with a feasible
circulation x. If (2b) holds, x is optimal. Otherwise, choose a circuit C in D,
violating (2b) and cancel along C. Canceling along C means that we increase
x(u, v) by 4 if (u, v} is a forward arc of C and decrease x(u, vyby Aif (v,u)isa
backward arc of C. Here A is the smaller value of min{g(u,v) —x(u,v): uv a
forward arc of C) and min(x(u, v) — f(u, v): (v, u) a backward arc of C).

Clearly, the modified x' is a feasible circulation and its cost is smaller than that
of x. The algorithm consists of repeating this canceling procedure as long as (2b)
is violated. This procedure is not necessarily of polynomial time. However,
Goldberg and Tarjan proved that the following selection rule makes the algorithm
strongly polynomial: each time choose a circuit C in G, to be one of minimum
mean cost. In section 3 we indicated how to compute such a circuit.

A beautiful feature of the algorithm of Goldberg and Tarjan is that it can be
considered as a straight generalization of the Edmonds—Karp—-Dinits algorithm
for computing a maximum flow. Indeed, in the proof of Theorem 4.3 it was shown
how a max-flow problem can be formulated as a minimum cost circulation
problem. The Goldberg-Tarjan algorithm, when applied to this special min-cost
circulation problem, yields precisely the Edmonds—Karp-Dinits algorithm.

5.5. Minimum cost flows

Let us be given again a digraph D = (V, A) with a source s and a sitk . A
non-negative capacity function g and a non-negative cost function ¢ are given on
A. We assume that both g and ¢ are integer-valued. We have seen how to compute
the maximum value M of an st-flow. This time we are interested in finding a
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minimum cost st-flow of value m for all possible integers m, 0 <m =< M. The cost
of a flow z is defined by cz = ¥ (c(e)z(e): e € A). We say that an st-flow z is a
min-cost flow if z has the minimum cost among the feasible s:-flows of value
val(z).

We have seen the equivalence between the feasibie circulation problem and the
maximum flow problem. Using the same elementary construction the min-cost
st-flow problem could be solved in strongly polynomial time with the help of a
strongly-polynomial min-cost circulation algorithm.

Here we briefly survey a direct algorithm due to Ford and Fulkerson (1962).
This algorithm is strongly polynomial only if the capacities are small integers. The
reason why we include this algorithm is that it has a nice combinatorial
application.

A flow z is of minimum cost if and only if there is a function #: V— Z_, called
a potential, (m(s) =0<n(@)=w(t) for v EV) for which the following two
optimality criteria hold:

) — mw) <cu,v)=>z(u,v) =0, (5.31)
(L) — w(w) > c(u, v)> z(u, v) = glu, v} . (5.3ii)

We use the notation &(u, v) = c(u, v) = #{v) + w(u) for (u,v)€ A. The method
(Ford and Fulkerson 1962) can be considered as a refinement of the max-flow
min-cut algorithm of Ford and Fulkerson. It constructs a min-cost flow for all
possible (integer) flow values m. ’

The algorithm starts with the identically zero flow and the identically zero
potential, Then the flow value is increased one by one and the potential is
appropriately increased so that the optimality criteria are throughout maintained.
The algorithm terminates when a maximum flow (and a minimum cut) is found,

Iterative step. At the general step we are given a flow z and a potential =
satisfying (i) and (ii). Construct an auxiliary digraph D' = (V, A’) as follows. D’
has two types of arcs: forward and backward. An arc (u,v) is a forward arc if
we€A, du,v)=0 and z(u,v)<g(u,v). An arc {(#,v) is a backward arc if
(v,u)EA, ¢(v,u)=0 and z(v, u) >0. Let § be the set of nodes reachable from s
in D’. There are two cases,

Case 1: tZ5. Define £, =min(&(k,v): (u,v) €87 (S), z(u, v) < g(u,v)) and
£, = min(—¢&(u, v): uw €8 (V—8), z(u, v) > 0) where the minimum is defined to
be = if it is taken over the empty set. Let £ = min(e,, £,). The optimality criteria
and the construction of § imply that ¢ is positive.

If £ =, the algorithm terminates since we have &, (S} = val(z) and thus the
current flow z is maximum and & *(S) is a minimum cut.

If £ <oo, revise 7 by increasing w(v) for every v EV—S by &.

Claim. The revised potential and the unchanged flow satisfy the optimality criteria.

Repeat the procedure. Observe that in the new auxiliary digraph the set of
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reachable nodes from s is strictly larger than S. Therefore, after at most [V| -1
occurrences of case 1 either £ = or case 2 occurs.

Case 2: t€ 5. Let P be a path in D' from s to ¢. Modify z as follows. rmﬁ
2'(u, v) = z(u, v) + 1 if (4, v) is a forward arc of P and let z'(u,v) =z(u, vy~ 1if
(v, u) is a backward arc of P.

Claim. The revised flow and the unchanged potential satisfy the optimality criteria.

What can we say about the complexity of the algorithm? We :mmn.m .ﬂo:w:_w M
flow augmentations. So the algorithm is polynomial if u.: En.E minimum cost
flows (of value 1,2,...,M) are required. The algorithm is not zommmmw:_%
polynomial if one wants to compute only a min-cost flow of value M since the

mplexity is proportional to M.
no:mrm _Mwﬁqwﬁ% capacity is not too big (namely, its value can be _uoEMaoa by a
polynomial of [V|, then the algorithm is (strongly) polynomial, irrespective of the
cost function.

5.6. An application to partially ordered sets

Let P={p,, P2, .-, P.} be a partially ordered set. Dilworth’s .Gomov famous
theorem asserts that the maximum cardinality @ of an antichain is equal to the
minimum number of covering chains. Another result of this type asserts that En
maximum cardinality ¢ of a chain is equal to the minimum number of covering
antichains. In this section we discuss common generalizations of these results.

For a family 8 = {B,, B,, ..., B,} denote L% = Cﬁmh:.w.n._,.. ..,k). By a
chain family €,={C,,C,,...,C,} we mean a set oﬁ v disjoint non-empty
chains. Let C, denote the set of chain families of ¥ chains and C the set of all
chain families. Let ¢, = min(|LJC,]: € €C,). o

By an antichain family o, ={A, A,, ..., A} we mean a set of a @&o.::
non-empty antichains. Let A, denote the set of antichain families of @ antichains
and A the set of all antichains. Let a, = min(|{) £, |: &/, EA,). .

By Dilworth’s theorem ¢, = n, by its polar a,=n. What can be said about ¢,

(1<y=gq)and about g, (1<a=<c)?
Theorem 5.4a (Greenc and Kleitman 1976). 4, = min(ge + [P — 1 €1|:6,€C).
Theorem 5.5a (Greene 1976). c, =min{gy +|P — U o, |:sf, €A).

Since a chain and an antichain can share at most one element, a, and ¢, do not
exceed the minimum in question.

Definition. An antichain family o, = {A,, 4,, ..., A,) and a chain family €, =

{C,,C,, ..., C,} are said to be orthogonal if
P=(Us,)U(U%) (@
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and

ANC#P forlsisa, l=sjsy, (b)
The non-trivial parts of Theorems 5.4a and 5.5a can be reformulated as follows.

Theorem 5.4b. For every a, 1 < a =<c, there are &, EA_ and €, €C, for some v,
which are orthogonal.
Theorem 5.5b. For every vy, 1 <y <a, there are €, €C and s, €A, for some «a,
which are orthogonal.

A common generalization is due to Frank (1980).

Theorem 5.6. There exists a sequence €|, s, ,..., #|€_,€_, ...
&T:_.&: +1 >+ + - Which arises as a combination of two %S:m:nmm €., «mnln.: cees m&,
and d,, s, , ..., s, where 6, € C and s, € A, with the property that any Sniwmh
of the sequence (whether €, or o) is orthogonal to the last member of other type
preceding it. (That is, o, sb,,...,9, are orthogonal to € and
€.-1, €z, - - . €,_; are orthogonal to ,&:__naa so on.) ’
Proof. Associate a digraph D =(V, A) with P where Vi={s,t,x,,%,,...
Xps Yis Yoo Yahrand Ai={(s,x,):i=1,2,.. . ,n}U{(y,0:i=1,2,... 3“
U{(x;, y,): if p,=p,}. Define all arc capacities g(a) to be 1, while the costs um:w
cle)=11f e =(x,, y;} and 0 otherwise. .

Apply the min-cost flow algorithm to this network and let z and 7 be a flow
and a potential at an intermediate stage of the algorithm. By analyzing the effect
of a flow augmentation and a potential change and using the optimality criteria
the following lemma can easily be proved.

Lemma 5.7. (a) Either w(y,) = w(x,) or w(y,)=w(x,)+ 1.
(b) If p, >p;and z(x, y;} =1, then w(x,) = w(y,)-

The arcs (x;, y,) (i <j) for which z(x,, y;) =1 correspond to a chain family €
where y = n — val(z). For a = w(¢) definc a family of, = {4,, A4,,..., 4.} where
A= A.ﬁ.“ w(x;) + 1= m(y;) =i}.

Lemma 5.8. & is an antichain family and is orthogonal to €,.

The proof easily follows from the optimality criteria and from Lemma 5.7.

Now the Ford-Fulkerson algorithm and Lemma 5.8 immediately i
Theorem 5.6. O tely imply
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6. Trees and arborescences

6.1. Minimum cost trees and arborescences

Given a connected graph G =(V,E) and a cost function ¢:E—R, find a
minimum cost spanning tree. This problem is one of the earliest combinatorial
optimization problem that has been solved. For an excellent historical survey, see
Graham and Hell (1985). For algorithmic details, see Tarjan (1983).

The following property of trees is crucial.

Lemma 6.1. Let T, and T, be the edge sets of two trees on the same node set. Then
for any edge e € T, there is an edge f € T, such that both T, —e + fand T,—f+e
are lIrees.

Proof. If e € T,, then f:=e will do. Suppose that e=s5t&T,. T, —e has two
components C, and C,. T, contains a path P connecting s and 1. Let f be an edge
of P that comnects C; and C,. This f satisfies the requirement of the lemma. [

Let T be a spanning tree of a graph G =(V, E). A fundamental cut belonging
to an element ¢ of F is a cut of G determined by the two components of T —e. A
fundamental circuit belonging to an edge f=ww EE—-Tisa circuit consisting of f
and the unique path in T connecting u and v. Clearly, an edge e€ T is in the
fundamental cut of an edge f € E — T if and only if ¢ is in the fundamental circuit

of f.

Lemma 6.1 immediately implies the following.

Theorem 6.2. For a spanning tree T of G the following are equivalent:
(a) T is of minimum cost.
(b) c(e} < c(f) for any edge e € T and edge f of the fundamental cut of e.
(©) cle) = c(f) for any edge e £ T and edge e of the fundamental circuit of f.

One of the simplest (and earliest) algorithms in combinatorial optimization is
the greedy algorithm to construct a minimum-cost spanning tree of a connected

graph G=(V, E).

Greedy algorithm (Boruvka 1926, Kruskal 1956). The procedure consists of
building a spanning forest by adding edges one by one. It starts with a forest of
node-set V that has no edges and stops when the current forest is a spanning tree.
The general step consists of adding an edge of minimum cost that connects two
distinct components of the current forest.

There is another version of the greedy algorithm.

Dijkstra—Prim algorithm (Dijkstra 1959, Prim 1957). Choose an arbitrary node
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X, Starting at x, build a tree edge by edge. At a general step choose a least cost
edge to be added that has exactly one end in the current tree.

The following algorithm does not build a tree or forest directly but gets rid of
edges of big cost and the remaining graph is the desired tree.

Reverse greedy algorithm. The procedure consists of discarding edges one by one
so that the remaining graph is connected. At a general step choose an edge of
maximum cost that is not a cut-edge of the current graph and delete it. The
algorithm stops when the remaining graph is a spanning tree.

All of these algorithms can be formulated in a general framework.

General algorithm. The algorithm consists of applications of the following two
operations in arbitrary order. The first operation builds a spanning forest F by
adding edges one by one while the second operations deletes edges one by one.
More precisely, let F denote the forest already constructed (at the beginning F is
the forest of no edges.)

Step 1. If F is a spanning trec, halt. Otherwise, choose an arbitrary cut B
disjoint from F and let ¢ € B be a cheapest edge of B. Add e to F.

Siep 2. Choose an arbitrary circuit C (if there is none, step 2 does not apply
any longer) and let e € C be the most expensive edge of C — F. Delete e from G.

Theorem 6.3. The final tree of the algorithm is of minimum cost.

Proof. Any stage of the algorithm can be specified by a pair (F, D) of disjoint
subsets of E where F denotes the forest constructed so far and D denotes the set
of edges deleted so far,

We prove by induction that at each stage (F, D) of the algorithm there is a
minimum cost tree T of G for which FC T C E —~ D. Any min-cost tree will do
when F=D =@. Suppose we have already proved the statement for (F, D), that
is, there is min-cost tree T with FCTCE — D.

Assume first that step 1 is applied and let ¢ € B be the newly added edge and
F':=F+e. If e€T, we are done. Otherwise, let C, be the fundamental circuit of
e with respect to T. Edge e is in cut B and in circuit C, therefore there must be
another edge f in B N C,. Since e,f € B, by the rule in step 1 we have c(e) < c(f).
Since e, f€ C, and T is of minimum cost we have c(f) = c{e). Hence ¢(e) = c(f)
and T'!=T—f + ¢ is another min-cost tree for which FFC T'CE — D.

Second, assume that step 2 is applied and let e € C be the newly deleted edge.
If T does not contain e, we are done. Otherwise let B, be the fundamental cut of
e belonging to T. There is an edge f #e with f € CN B,. Since ¢, f €C, by the
rule in step 2 we have c(e) = c(f). Since e, f € B, and T is of minimum cost we
have ¢(e) =c(f). Hence c(e) =c(f) and T':=T — f + e is ancther min-cost tree
for which FCT'CE-(D+e). O
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Remark. The above algorithm can be extended to matroids. That is, there is a
greedy algorithm for finding a minimum cost basis of a matroid. (See chapter 11.)

Let us turn to a directed counter-part of the minimum cost spanning tree
problem. Let us be given a digraph D = (V, A} and a cost function ¢: A—> R,.
Assume that every node can be reached from a mwnm_mna node s, mrmﬂ is, D
includes a spanning s-arborescence. Our next problem is to find a minimum cost

s-arborescence. .
This problem has been solved by Fulkerson. Note that the min-cost tree

problem can be reduced to a min-cost arborescence problem: replace each edge of

G by a pair of oppositely directed arcs. .
Call a set-function z:2" " — R, c-feasible if

A&WM (z(X): aenters X) foreverya€A. (6.1)

Theorem 6.4 (Fulkerson 1974). The minimum cost of a spanning s-arborescence is
max(}) (z(x): X CV—3s): z is c-feasible). Furthermore, if ¢ is integer-valued, the
optimal z can be chosen integer-valued.

Proof. Let F be a spanning s-arborescence and z a c-feasible vector. We have
o(F) =2, (c(@): a EF)
=, AM (z(x): aenters X): a € hv
= (2X):XCV-5) (6.2)

from which max<min follows. In (6.2) we have equality if the following
optimality criteria hold.

(@) = 2, (z(X): a enters X) foreverya € F , (6.3a)
z(X) >0 implies § ;(X)=1. (6.3b)

The algorithm below finds a spanning s-arborescence F and a feasible z ﬁoH. which
(6.3a~b) holds. It consists of two parts. The first part constructs z sur__n the
second constructs F. In the course of the first part we revise the cost function. The
current cost function is denoted by ¢’. We call an arc a a O-arc if ¢'(a) = 0.

Part 1. Tterate the following step. Choose a minimal set X CV —s with no
entering O-arc. Define z(X):= min{c'(a): a enters X) E._.n_ wosmo. c' as F:oém.
¢'(@) := ¢'(a) - z(X) if a enters X. The new ¢’ is non-negative and its value is zero
on at least one more arc. .

Part 1 terminates if every set X CV —s has an entering 0-arc, equivalently,
there is a spanning s-arborescence consisting of 0-arcs.

Part 2. Starting at s and using only 0-arcs build up a spanning u-ma_u.oHomnu:nn F.
If, during the building process, there is more than one {-arc leaving the sub-
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arborescence already constructed, choose that one which became a 0-arc earliest
during the first part.
Obviously the constructed z is ¢-feasible and (6.3a) holds.

Lemma. z and F satisfy (6.3b).

Proof. Let X be a set with z(X) > 0. If, indirectly, § (X) > 1, there is a moment
during part 2 when a sub-arborescence F' is at hand for which § ..(X) = 1 and the
arc ¢ currently added to F' enters X. Consider the moment of part 1 when 2(X’)
became positive. Then no O-arc entered X and every proper non-empty subset of
X had an entering O-arc. In particular, there is a O-arc f entering X — V(F') which
does not enter X. Therefore, when z(X') became positive, f was a 0-arc while e
was not and we are in a contradiction with the rule of part 2: arc f should have
been chosen instead of e, O

A related problem is as follows. Given a digraph D = (V, A) and a cost function
d on A, find a maximum cost branching. We call a pair (p, y) a covering, where
p:V— R, is a non-negative function on V and y:2"— R, a non-negative function
on the subsets of V if d(u, v) <p(v)+ X (y(B): u,v EBCV) for every (u,v) €
A. The value of a covering is X (p(v): vEV)+ L (¥(B)|B|-1): BCV).

Theorem 6.5 (Edmonds 1967, Chu and Liu 1965). The maximum cost of a
branching of D is the minimum value of a covering. If d is integer-valued, the
optimal covering can be chosen integer-valued.

Proof. Obviously max < min. To see the other direction, extend D by a new node
s and new arcs (s, v) (v €V). Define a cost function ¢ on the arcs of the extended
digraph D', as follows. Let the cost of the new arcs of D' be M := max{d(a):
a€ A) and (@) = M — d(a) (a € A). By Theorem 6.4 there is a c-feasible vector
z:2Y—R, and a spanning s-arborescence F of D’ satisfying 6.3. Define p(v):=
M — ¥ (2(B): v € B) and for |B|>1 define y(B):=z(B) (B CV). It is straight-
forward that (p, y) is a covering and its value is equal to the d-cost of the
branching FNA of D. O

6.2. Packing and covering
A basic result on this field is due to Edmonds (1973).
Theorem 6.6. Given a digraph D = (V, A) with a specified node s, there are k

pairwise arc-disjoint spanning arborescences rooted at s if and only if 6 (X)=k
for every X CV —s.

Proof (Lovisz 1976a, sketch). Starting at 5 we build up an arborescence F such
that

8, f(X)=k—-1 foreveryXCV~s. (%)
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By induction on k, this will prove the sufficiency of the condition. Suppose that F
is sub-arborescence satisfying (*) which is not spanning (that is, V(F)# V). Call a
set XCV—s critical (with respect to F) if it satisfies (*) with equality. By
submodularity, if X and Y are critical and X NY #@, then XNY and XU Y are
critical. By the hypothesis there is no critical subset of V—V(F). Let M be a
minimal critical subset for which M — V(F) ##. Then there is an arc (¥, v)E A
such that « € M NV(F) and v € M — V(F). This arc does not enter any critical set
therefore the sub-arborescence F' = F + (u,v) continues to satisfy (*). (If no
such an M exists, any arc (u, v) leaving V(F) will do.) O

Note -that Theorem 6.6 of Edmonds immediately implies the directed arc-
disjoint version of Menger’s theorem. Indeed, adjoin & paralle] arcs from ¢ to v
for every v €V — {s,¢} and apply Edmonds’ theorem.

The following conjecture is a kind of node-disjoint counterpart of Theorem 6.6.

Conjecture 6.7. (a) Suppose that, given a digraph D =(V, A) and a specified
node s €V, there are k openly disjoint paths from s to any other node of D. Then
there are k arc-disjoint s-arborescences of D such that for any node v €V - s the
k paths from s to v uniquely determined by the arborescences are openly disjoint.

(b) Suppose that, given a graph G =(V, E} and a specified node s €V, there
are k openly disjoint paths from s to any other node of G. Then there are &
spanning trees of G such that for any node v €V —s the k paths from s to v
uniquely determined by the k& trees are openly disjoint.

(c) The same as (b) except replace “openly disjoint” by “edge-disjoint™.

Conjecture 6.7 (a) easily implies Conjecture 6.7 (b). Whitty (1986) proved
Conjecture 6.7 (a) for k = 2 while Conjecture 6.7 (b) has been proved for £ = 3 by
Cheriyan and Maheshwari (1988) and by Zehavi and Itai (1989). Conjecture 6.7
(c) is proved for k =2 (using the ear-decomposition of 2-edge-connected graphs).

Recently, A. Huck proved (a) for acyclic digraphs and disproved it for general
digraphs when k= 3.

" One may be interested in finding k arc-disjoint spanning arborescences which
need not be rooted at the same node.

Theorem 6.8. There are k arc-disjoint spanning arborescences if and only if
Mm?ﬁ.vwkﬁl 1)
for every family of disjoint non-empty sets X, X,, ..., X,.
More generally, the arborescence packing problem can be solved when lower

and upper bounds are imposed at every node for the number of arborescences

rooted at that node.
Another extension of Edmonds’ theorem is due to Schrijver (1982). Let
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D = (V, A) be a digraph and let V,, ¥, be a bipartition of V. Call a subset B of arcs
a bi-branching if é ;(X)=1 for every X CV, and X 2 V,.

Theorem 6.9. (Schrijver 1982). There are k arc-disjoint bi-branchings if and only
if 87 (X)=k for every X CV, and for every X DV,.

When |V,|=1 we are back at Theorem 6.6. When both V| and V, are
independent Konig's edge coloring theorem is obtained as a special case. (See
chapter 3.)

Schrijver used this result to prove the following conjecture of Woodall for
acyclic digraphs in the special case where each sink can be reached from each
source.

Conjecture 6.10. In an acyclic digraph if every directed cut contains at least &
arcs, there are k disjoint sets of arcs each of which covers all directed cuts.

A counterpart of Theorem 6.6 is due to Vidyasankar (1978).

Theorem 6.11. Let s be a specified node of a digraph D = (V, A) with no entering
arc. The arcs of D can be covered by k spanning s-arborescences if and only if (i)
6" (Wysk for vEV—s and (ii)) k-8 (X)<= X (k-6 (v):v € T(X)) for every
XCV—1s where T(X) .= {vEX: there is an arc (u,v)E A with u€V - X}.
Proof. By elementary construction. For every v € V—s adjoin to D a copy of v,
denoted by v', and k parallel arcs from v to v’ and k — 8 ~ (v) parallel arcs from v’
to v. Furthermore, for (u,v) € A adjoin & parallel arcs from u to v'. Apply
Theorem 6.6 to the extended digraph D' and observe that &k arc-disjoint spanning
arborescences in D’ correspond to k covering s-arborescences in D. Moreover, if
8" (X')<k for some X' CV'—s, then X ={vE X" v' £X'} violates (ii). DO

Another interesting consequence of Edmonds’ theorem is the following.

Theorem 6.12. The arc-set of a digraph D = (V, A} can be covered by k branchings
if and only if (i) 8 “(v) <k for every v €V and (ii) |A(X)| < k(|X| — 1) for every
X CV (where A(X) denotes the set of arcs induced by X).

Proof. By elementary construction. Adjoin a new node s to V and for vEV
adjoin k — & " (v) parallel arcs from s to v. In the new digraph D' we have

' (X)=8"(X)+ L k-8 (v): vEX)
=5 (X)—8 " (X) - |A(X)| + k|X|=k

for every X’ CV. By Theorem 6.6 there are k arc-disjoint spanning s-arboresc-
ences in D'. These determine k covering branchings of D. O
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For undirected graphs we have the following (historically earlier) theorem by
Nash-Williams (1964).

Theorem 6.13. The edge set of an undirected graph G = (V, E) can be covered by
k forests if and only if |E(X)| <k(|X|—1) for every XCV.

Proof. Theorem 6.12 and the following easy lemma imply the result, [J

Lemma. The edges of a graph G = (V, E) have an orientation for which 8 (v)<k
for every v €EV if and only if

|E(X)| < k|X| forevery XCV . (*)

Proof. (Sufficiency) In an orientation of G call a node v bad if § (v) > k. Choose
an orientation where the “badness” ¥ (8 (v) — k: v bad) is minimal. If there is
no bad node, we are done. Otherwise, let ¢ be a bad node and let X be the set of
nodes from which ¢ is reachable in the current orientation. Then X contains a
node s with 57 (s) <k since otherwise |E(X)|=X (6 (v): v EX)>k|X|, con-
tradicting ( *). Reorienting the arcs of a dipath from s to ¢ results in an orientation
with smaller badness. O

(Note that this lemma easily follows from Koénig's theorem, as well). For
connected graphs the problems of covering the edge set by k forests or by &
spanning trees are clearly equivalent. The packing problem of spanning trees was
solved by Tutte (1961a).

Theorem 6.14. A connected graph G = (V, E) contains k pairwise edge-disjoint
spanning trees if and only if e, = k(t — 1) holds for every partition {V,,V,,...,V;}
of V (V, D) where e, denotes the number of edges connecting different V.

Remark. Edmonds extended Tutte’s theorem to matroids by providing a good
characterization of the existence of k disjoint bases of a matroid. See chapter 11.

7. Higher connectivity

7.1 Connectivity between two nodes

We start this section with a result which is undoubtedly the central theorem of this
whole chapter, the Menger (1927) theorem. In what follows s and ¢ are two
specified nodes of the graph or digraph in question. A set of paths is called openly
disjoint if the paths are pairwise disjoint except, possibly, for their end nodes.

Theorem 7.1. (a) In a digraph (graph) the maximum number of arc-disjoint
(edge-disjoint) st-paths is equal to the minimum number of arcs (edges) covering all
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st-paths. (Moreover, the minimum is attained on a set of type A (S) where SCV is
an st-set.)

(b) In a digraph (graph) if there is no arc (edge) from s to t, the maximum
number of openly disjoint st-paths is equal to the minimum number of nodes
distinct from s and t covering all st-paths.

Actually this is four theorems according to whether we consider directed or
undirected and edge-(arc-)disjoint or openly disjoint st-paths. Menger originally
proved the undirected, openly disjoint version.

Proof. We have already seen two proofs for the arc-disjoint case (as a conse-
quence of the max-flow min-cut theorem and a consequence of Edmonds’ disjoint
arborescences theorem). From this the other three cases follow by elementary
construction. Namely, in case (a) replace each edge by a pair of oppositely
directed arcs and observe that if there is a set of k arc-disjoint paths in the
resulting digraph, then there is one that does not use both arcs assigned to an
original edge. The same construction vields the undirected openly-disjoint version
from the directed one,

To see the directed openly-disjoint version construct a new digraph D’ from D,
as follows. Replace each node v (v # s, f) of D by a pair of new nodes v’ and v".
Let (v',v") be an arc of D' and for an arc (4, v) of D let (", v’) be an arc of D’
Arc-disjoint st-paths in D' correspond to openly disjoint paths in D. Moreover, if
there are k arcs in D’ covering all sr-paths, then these arcs can be assumed to be
of type (v’, v") and this set of arcs corresponds to a set of k nodes of D covering
all st-paths. O :

There exist other versions of Menger’s theorem. For example, given a graph
and two disjoint subsets §, T of its node set, there are k disjoint paths between §
and T if and only if there are no k& -1 nodes covering all such paths. By
clementary construction this result easily follows from the original Menger
theorem. Yet another version, sometimes called the fan lemma, is as follows. Let
5 be a node of a graph and T a subset of nodes not containing s. There are k paths
connecting s and some elements of T so that they are disjoint except at s if and
only if there are no k£ — 1 nodes in V' — s covering all such paths.

Hoffman found the following unifying approach to the different versions of
Menger’s theorem. Let § be a finite set and let 2 be a set of ordered subsets of S.
We call the members of % paths. Suppose that for any two paths P=
{P1s Pzs--., P} and T={t,,1,,...,4} sharing an element p, = ¢, the sequence
{P1s- s Pistjeqs- - - » 4} includes a path.

Theorem 7.2 (Hoffman 1974). The maximum number of disjoint paths is equal to
the minimum number of elements covering all the paths.

As a consequence, a Menger-type theorem can be formulated for disjoint
shortest paths.
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Corollary 7.3. The maximum number of openly disjoint shortest paths from s to t
is equal to the minimum number of nodes covering all shortest paths from s to 1.

This type of min-max results fails to be true for paths of bounded length in
general, however we have the following.

Theorem 7.4 (Lovisz et al. 1978). Let G = (V, E) be an undirected graph with two
specified non-adjacent nodes s and t. The maximum number of openly disjoint
st-paths of length at most k (k = 2) is at least 2/k times the minimum number of
nodes (distinct from s, t) covering all st-paths of length at most k.

A possible generalization of Menger’s theorem (undirected, openly disjoint) is
the following. In an undirected graph given a subset of nodes T, what is the
maximum number of disjcint paths connecting nodes of T. This problem was
answered by Gallai (see Corollary 8.25). Mader found a min-max formula for the
maximum number of openly disjoint paths with end nodes in 7. (See Theorem

8.24))

7.2. Global connectivity

Let k be a positive integer. A graph G = (V, E) is called k-connected (sometimes
k-node-connected) if |V| >k and for any subset X CV with less than k elements
G(V—X) is connected. G is called k-edge-connected if deleting any subset of
edges of less than k elements leaves a connected graph. This is equivalent to
requiring d*(X)=k for any ##XCV. A digraph D =(V, A) is called k-arc-
connected (often the term strongly k-arc-connected is used) if deleting any subset
of arcs of less than k elements leaves a strongly connected digraph. This is
equivalent to saying that & T(X) =k for any § # X CV. We will say that a digraph
D with a specified node s is k-arc-connected from s if 8 ~(X) = & for any subset
X CV—s. By Menger's theorem this is equivalent to the property that there arc £
arc-disjoint paths from s to any other node. This is, in turn, equivalent to that
there are k spanning arborescences rooted at s (Theorem 6.6). Finally, let us call
a digraph strongly k-connected if deleting any subset of nodes of less than k
elements leaves a strongly connected digraph.

These definitions reflect one of our intuitive expectations for a graph to be
“pretty much connected”: it is not possible to destroy the connectivity by taking
away a small part of the graph. Another natural definition for high connectivity is
that there are many disjoint paths between any pair of nodes. The following
result, due to Whitney, says that these two approaches coincide. (One may have
other intuitions for high connectivity: for example, if the graph contains k
edge-disjoint spanning trees. Let us call such a graph k-tree-connected. For a
characterization of k-tree-connected graphs, see Theorems 6.13 and 7.11).

Theorem 7.5 (Whitney 1932). A graph on more than k nodes is k-connected if and
only if there are k openly disjoint paths between any two nodes. A graph (digraph)



148 A, Frank

is k-edge-(arc-)connected if and only if there are k-edge-(arc-)disjoint paths from

any node to any other.

Proof. The second part immediately follows from Theorem 7.1. To see the.
non-trivial direction of the first part let s and ¢ be two nodes. If they are not.

adjacent, we are done by Menger. Otherwise let e be an edge connecting s and ¢,
If there are no k — 1 openly disjoint st-paths in G — e, there is (by Menger) a

subset of nodes of at most k — 2 clements not containing s and ¢ for which s and ¢
belong to different components of G —e¢ — X. Since G has more than k& nodes

either X +5 or X + ¢t is a disconnecting set of X — 1 elements. U

Robbins’ (1939) theorem (Corollary 2.13) described a relation between 2-edge-

connected graphs and strongly connected digraphs. The following generalization

is due to Nash-Williams (1960).

Theorem 7.6. An undirected graph is 2k-edge-connected if and only if it has an _.

orientation which is k-arc-connected.

Actually Nash-Williams proved a much stronger result:

_H._-..WE.@E 7.1. An undirected graph has an orientation such that for every ordered g
pair (x, y) of nodes there are |A(x,y)/2] arc-disjoint xy-paths where A(x, ¥}

denotes the maximum number of edge-disjoint xy-paths.

One may be interested in the existence of a (strongly) k-connected orientation. .

The (“sufficiency” part of the) following conjecture is open even for k =2,

Ooamnnﬁ.o 7.8. A graph G = (V, E) has a k-connected orientation if and only if ..
deleting any subset X of j nodes (0=j=k—1) results in a 2(k —j)-edge-.

connected graph.

In section 2 we saw an ear-decomposition theorem for strongly-connected i
digraphs. This can be interpreted so that every strongly connected digraph can be :
obtained from a node by consecutively adding and subdividing arcs. Subdividing
an arc (1, v) with a new node z means that we replace arc (u, v) by arcs (¢, z) and .

(z, v) where z is a new node. The following generalization is due to Mader.

Theorem 7.9 (Mader 1982). A digraph D is k-arc-connected if and only if D can
be obtained from a node by adding arcs (connecting old nodes) and applying-

operation O,:
Operation O,: Pick up k arbitrary arcs, subdivide them by nodes z, .
and identify z, , ... .2z, to a new node z.

Corollary 7.10. A digraph D (with 8~ (s) = 0) is k-arc-connected from a node s if
and only if D can be built up from s by repeated applications of the following

CeaZy
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operation: For some j, 0<j<k, first apply O; and add then k—j new arcs
entering z.

Using this characterization one can easily derive Edmonds’ Theorem 6.6 on
arc-disjoint arborescences (see Mader 1983). Also we have the following.

Corollary 7.11. A graph G=(V,E) is k-tree-connected if and only if G can be
obtained from a node by sequentially adding edges (connecting old nodes) and
applying the following operation: choose j (0<j<k) distinct edges and k — | (not
necessarily distinct) nodes, subdivide the j edges by j nodes, identify these | nodes
{0 a new node z and connect z and the k —j old nodes by k—| edges.

Theorems 7.6 and 7.9 imply a result of Lovasz.

Theorem 7.12 (Lovész 1979, Problem 6.53). An undirected graph G is 2k-edge-
connected if and only if G can be obuained from a node by adding edges and
applying Operation Q,: pick up k arbitrary edges, subdivide them by nodes
Zys- - . 2, and identify zy, . . ., 2, into a new node z.

Notice on the other hand that Thecorem 7.12 implies Theorem 7.6. What about
(2k + 1)-edge-connected graphs? We need two other operations.

Operation DH“ Proceed as in @,, then choose a node x of the graph and add a
new edge joining x and the new z.

Operation Q}: Proceed as in Q, thereby constructing G', choose k distinct
edges e],..., ¢, of G' not all incident to z, subdivide each e, by a node z;,
identify the z;’s into a new node 2’ and add a new edge joining z and 2.

Theorem 7.13 (Mader 1978a). A graph G is (2k + 1)-edge-connected if and only if
G can be obtained from a node by successive addition of edges and repeated
applications of Q; and Q}.

Let us be given a k-edge-connected undirected graph G = (V,E). It is not
difficult to prove that for k odd the k-element cuts are pairwise non-crossing.
(Two cuts A(X), A(Y) are called crossing if none of X-Y, Y-X, XNY,
V- (X UY) is empty). Dinits et al. (1976) showed that the structure of minimum
cuts can also be described when k is even. Let k =2L.

Let us call a 2-edge-connected (loop-free) graph T = (U, F) a circuit-tree if each
block of T is a (possibly 2-element) circuit. Intuitively, T consists of edge-disjoint
circuits which are joined to each other in a tree-like manner.

Any minimum cut of T consists of two edges belonging to the same circuit of 7.
If we replace each edge of T by ! parallel edges, we obtain a 2/-edge-connected
graph T'. Clearly, the minimum cuts of T' correspond to the minimum cuts of 7.

The content of the next theorem is that the structure of minimum cuts of every
21-edge-connected graph can be described with the help of a circuit-tree.
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Theorem 7.14 (Dinits et al. 1976). Let G = (V, E) be a 2l-edge-connected graph.
There exists a circuit-tree T= (U, F) and a mapping ¢ :V— U so that for every.

minimum cut of T determined by a partition [X,U— X} of U the cut of G

determined by the partition [¢ '(X), ¢ '(U~X)] is a minimum (i.e., of 2

elements) cut of G and every minimum cut of G arises this way.

We close this subsection by mentioning two results on constructing k-edge
connected graphs and k-arc-connected digraphs.

Theorem 7.15. (a) (Watanabe and Nakamura 1987) An undirected graph G =
(V, E) can be made k-edge-connected (k =2) by adding at most y new edges if and’

only if
2 k—d(X):i=1,...,0<2y

holds for every family {X.} of disjoint non-empty subsets of V.
{b) (Frank 1992a) A directed graph D = (V, A) can be made k-edge-connected
(k=1) by adding at most v new edges if and only if

Sk-6"XK)i=1,...,0<y and SE-8"(X):i=1,.. 0%y,
holds for every family {X} of disjoint non-empty subsets of V.

In m..‘.nmaw (1992a) the first part has been generalized to the case when the .
prescribed edge-connectivity between each pair of nodes is arbitrary (and not:

necessarily the same number k). Also augmentations with minimum node-costs :
are tractable. For a survey see Frank (1994).

7.3. 3-connected graphs

In the preceding subsection we saw how to construct all the k-edge-connected

graphs. As far as node-connectivity is concerned there is an ear-decomposition:
result for 2-connected graphs (Proposition 2.6). Tutte (1966) developed a theory:

for decomposing a 2-connected graph into 3-connected ‘“components”. (The:

reader is refered to the original work since even formulating the result needs too :
much space.)

Unfortunately there are no known analogous constructions for k-connected :

graphs, in general. For 3-connectivity, however, the situation is much better. In
order to be able to work with 3-connected graphs we must have “reductions” that

preserve 3-connectivity. Two simple reductions are deleting and contracting an :
edge e. We use the notation G —e and G/e for the graphs arising from G by '

deleting and contracting e, respectively. For 2-connectivity we saw (Proposition ;

2.7) that any edge of a 2-connected graph can be either deleted or contracted :

without destroying 2-connectivity. For 3-connectivity one has the following.

Theorem 7.16 (Tutte 1966, Theorem 12.65). If e is any edge of a 3-connected -

Connectivity and network flows 151

graph on at least four nodes, then either Gle is 3-connected or G—e¢ is a
subdivision of a 3-connected graph.

Proof (Thomassen 1984). Suppose G/e is not 3-connected for an edge e =xy.
Then there is a node z such that G’ =G — {x, y, z}.is not connected. What we
have to show is that there are three openly disjoint paths between x’ and y’ not
using e for any two nodes x’, y’ distinct from x and y. In G there are three openly
disjoint paths connecting x' and y'. If one of these contains e, then x’ and y’
belong to the same component of G’ or one of x’, y' equals z. Then there is a
component C of G’ not containing x’ and y' and there is a path P inC+{x,y}—
e connecting x and y. But now replacing e by P we obtain three openly disjoint
paths between x’ and y’ not using e. U

We say that an edge e of a 3-connected graph is contractible if Gle is
3-connected. The next result, due to Tutte (1961b) shows that there always exists
a contractible edge.

Theorem 7.17. A 3-connected graph G = (V, E) with at least five nodes has a
contractible edge.

Proof (sketch, Thomassen 1980b). If an edge xy is not good, there is a node z
such that {x, y, z} is a disconnecting set of G. Choose xy in such a way that the
largest component C of G — {x, y, z} is as big as possible. Let C' be another
component of G — {x, ¥, 2z} and u €V(C’) such that uz € E. The contraction of

uz leaves a 3-connected graph. [

One way to generate new 3-connected graphs is applying the following splitting
operation (that may be considered as a converse to contracting an edge). Note
that the graph may have parallel edges.

Operation S: Choose a node v of degree at least four. Partition the edges
incident to v into two parts E, and E, so that [{u:uw €E}|=2 for i=1,2.
Replace v by two nodes v, and v,, replace each edge vu € E; by an edge vu
(i=1,2) and join v, and v, by an edge.

Theorem 7.17 provides a kind of converse.

Corollary 7.18. A (not necessarily simple) graph G is 3-connected if and only ifG
can be obtained from K, by repeatedly adding edges (connecting old nodes) and

applying operation §.

A slight drawback of this theorem is that, though parallel edges do not play any
role in 3-connectivity, it may happen that even if the 3-connected graph G to be
constructed is simple the graphs occurring in the intermediate steps are not. This
is the case, for example, if G is a wheel (bigger than K,). (A wheel is a circuit
plus an extra node connected to all nodes of the circuit.) In a sense wheels are the
only essential examples of this type since Tutte (1961b) proved the following.
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Theorem 7.19. A simple graph is 3-connected if and only if G can be obtained
from a wheel by repeatedly adding edges connecting non-adjacent old nodes and

applying operation S.
This result is a reformulation of the following one.

Theorem 7.20 (Tutte 1961b). A 3-connected graph G is either
(a) a wheel or
(b) contains an edge e for which G —e is 3-connected or
(c) contains a contractible edge which is not in a triangle.

Proof (Thomassen 1984). Suppose that neither (b) nor (c) occurs. By Theorem |

7.17 there is a triangle T. Let V(T) = {x, y, z}. We claim that at least two nodes of .
T have degree three. Suppose, indirectly, x has neighbours x,, x, not in T and y
has neighbours y,, y, not in T. Since G — xy is not 3-connected, there is a node z'

such that G'=

G—{z,2'} —xy is not connected. Let G, and G, denote the
components of G’ containing x and y, respectively. Since G —y is 2-connected, °

there are two disjoint paths P;, P, from {y,, y,} to {z’, z}. One of x, and x,, say .

x,, is distinct from 2’. In G ~ x there are two openly disjoint paths O, Q, fromx, -

to {z’,z}. Since P,, P, are in G, +{z',z} and Q,,Q, are in G, +{z',z},"

P! =(P,+ Q,+ Q,) is a path from y to z. Now P;, P, and P, = (yx, xz) are three

openly disjoint paths between y and z, therefore edge yz satisfies (b), m.m,

contradiction.

So T has at least two nodes of degree 3, say x and y. I x' (#y,2) is a.
neighbour of x, then it is easy to see that G/xx' is 3-connected. Hence xx' must *
be in a triangle. The third node of this triangle must be z (unless G = K, ) and we -
conclude that x' has degree 3. We then consider the neighbour x" of x' distinct 5

from x and z and continuing this way we see that G is a wheel with center z. U

Obviously Tutte’s theorem, in turn, implies Theorem 7.17. Theorem 7.17 is a

highly powerful device in proving results apparently not related to connectivity. '

For example, with the help of it, Thomassen found an easy proof of Kuratowski’s .

theorem on planarity of graphs as well as Tutte’s theorem stating that every

3-connected planar graph has a convex representation in the plane. Note that :

Tutte originally used a different approach. He relied on the following result.

Theorem 7.21 (Tutte 1963). Every edge uv of a 3-connected graph is contained in
two peripherical circuits C, and C, (that is a chordless circuit the deletion of which

results in a connected graph) for which V(C,)NV(C,)= {u,v} A 3-connected
graph is planar if and only if every edge is contained in exactly two peripherical :

circuits.

Note that the first part of the theorem is straightforward for planar graphs as *
the two circuits determined by the faces incident to uv satisfy the requirements. :

Here are three variations of Theorem 7.17.
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Theorem 7.22 (Thomassen and Toft 1981). Every simple 3-connected graph with
no triangles contains a circuit C such that every edge of C is contractible.

Theorem 7.23 (Halin 1969a). If v is a node of degree 3 in a 3-connected graph,
then there is an edge uv for which Gluv is 3-connected.

Theorem 7.24 (Ando et al. 1987). Every 3-connected graph G=(V,E) with
[V| >4 has at least |V|/2 contractible edges.

There is a counterpart of Theorem 7.17.

Theorem 7.25 (Barnette and Griinbaum 1969, Titov 1975). Every 3-connected
graph with at least five nodes has an edge e such that G — e is a subdivision of a
3-connected graph.

Proof. If there is no such an edge, then by Theorem 7.16 every edge is
contractible without destroying 3-connectivity. Let G be a graph obtained by
contracting an edge s¢. By induction there is an edge e of G’ such that G' —¢isa
subdivision of a 3-connected graph. If G — e is not a subdivision of a 3-connected
graph, then there are nodes x, y such that G — {x, y} — ¢ has a component
consisting of two nodes and e is incident to one of them, denoted by z. Since G is
3.connected there is an edge f from z to {x, y}. But {z, x, y} is a separating set of
G so the contraction of f destroys 3-connectivity. [

Corollary 7.26. A graph G=(V,E) is 3-connected if and only if G can be
obtained from K, by sequentially adding edges and applying the following
operations:

(a) Pick up two non-parallel edges,
v by an edge.

(b) Pick up an edge xy and a node v (#x, y), subdivide xy by a node u and join
u and v by an edge.

subdivide them by nodes u, v and join u and

Bamette and Griinbaum (1969) used Theorem 7.25 to provide a short proof of
a theorem of Steinitz stating that the 1-skeletons of the 3-dimensional polytopes
are precisely the 3-connected planar graphs.

Finally, here is a theorem consisting deletion of nodes rather than edges.

Theorem 7.27 (Chartrand et al. 1972). Every 3-connected graph of minimum
degree at least 4 has a node v such that G —v is 3-connected.

7.4. Preserving connectivity

In the preceding subsection on 3-connected graphs we have encountered theorems
saying that a 3-connected graph remains 3-connected under certain operations
(Theorems 7.16, 7.17, 7.27). In this part we survey further operations that
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preserve connectivity properties of graphs. As far as node-connectivity is
concerned, only a few general reduction results are known. Here is one.

Theorem 7.28 (Thomassen 1981). A k-connected graph with no triangle contains
an edge whose contraction results in a k-connected graph.

..;n situation is much better for edge connectivity. Let G be a graph (or
digraph) and let e =uz and f=zv be two edges (or arcs) of G incident to a
common node z. We say that a pair {e, f} is split off (at z) if we replace e and f
by a new edge (arc) uv. The resulting graph (digraph) is denoted by G*.

The following fundamental result is due to Mader (1978a).

Theorem 7.29. Let G = (V, E) be a (not necessarily simple but loopless) graph and
z a node of degree at least 4 so that there is no cut-edge incident to z. There exist
edges e, fincident to z such that A(x, y, G) = A(x, y; G”) for every pair of distinct
nodes X, ¥ different from z. (Here Mx, y; G) denotes the maximum number of
edge-disjoint paths in G connecting x and y).

\w relatively simple proof can be found in Frank (1992b). Mader used it to
ao:a.,m Nash-Williams® orientation result {Theorem 7.7). Theorem 7.13 was also
obtained from this result. Theorem 7.6 follows already from a weaker form of
Theorem 7.29 due to Lovasz (1979, Problem 6.53): If z is a node of even degree
”&E Alx, y: G) =k whenever x, y €V — z, then for any edges ¢ incident to z there
is an edge f incident to z such that A(x, y: G )= k for every x, y (»*z). While the
directed analogue of Theorem 7.29 is not true in general the counterpart of
Loviész’ version holds, as follows.

Theorem N.wc (Mader 1983). Ler D = (V, A) be a digraph and z a node for which
8 ANM =8"(z). .w:.ﬁwo.qm that A(x, y: D)=k for every x, yEV—z. For any arc
mxnmﬂaw z there is an arc f leaving z such that Ax,y: D)=k for every x
yev—z .

This result is one ingredient to Theorem 7.9. The other one wi i
9. will b
later (Theorem 7.41). ¢ mentioned
If we restrict ourselves to Eulerian digraphs (that is, 8 "(z) = 8 (z) for every
mo&n va then the counterpart of Theorem 7.28 does hold (although it is much
easier).

Theorem 7.31 (Frank 1989, Jackson 1988). Let D = (V, A) be an Eulerian digraph
and z a node. For Eww arc e entering z there is an arc f leaving z such that
Alx, y: DY=Ax, y: DY) for every x, yEV — 2.

Sometimes we can maintain connectivity properties under ““bigger” reductions.

Theorem 7.32 (Thomassen and Toft 1981). Every 3-connected graph with mini-
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mum degree at least 4 contains a circuit whose contraction results in a 3-connected
graph.

Theorem 7.33 (Jackson 1980). A simple 2-connected graph of minimum degree at
least 4 contains a circuit C such that the removal of its edges leaves the graph
2-connected and, in addition (Thomassen and Toft 1981), G —V(C) is connected,
The first part holds for not necessarily simple planar graphs (Fleischner and

Jackson 1985).

Theorem 7.34 (Thomassen and Toft 1981). Every simple 2-connected graph G of
minimum degree at least 3 contains an induced circuit C (that is a circuit without

chords) such that G - V(C) is connected.

The same conclusion was proved by Tutte for 3-connected graphs (see Theorem
7.21).

Theorem 7.35 (Thomassen and Toft 1981). If G is a 2-connected graph with
minimum degree at least 5, then G contains an induced circuit such that G —V(C)
is 2-connected. If G is 3-connected with minimum degree at least 4, then G has a

circuit such that G —V(C) is a block.
For higher node connectivity we have the following results.

Theorem 7.36 (Thomassen 1981). Every (k +3)-connected graph G contains an
induced circuit C such that G — V(C) is k-connected.

Theorem 7.37 (Egawa 1987). Every (k +2)-connected triangle-free graph G
contains an induced cycle C such that G —V(C) is k-connected.

Theorem 7.38 (Mader 1974a). Every k-connected graph G with minimum degree
at least k + 2 contains a circuit C such that G — E(C) is k-connected.

For edge-connectivity Mader proved the following.
Theorem 7.39 (Mader 1985a). For every pair of nodes s, of a connected graph
there is a path P connecting s and t such that deleting the edges of P the local
connectivity A(x, y), for any pair x, y of nodes, can decrease by at most two.

A directed counterpart of this result is also due to Mader.
Theorem 7.40 (Mader 1981). For every pair of nodes s, t of a k-arc-connected

digraph there is a path P from s to t such that deleting the arcs of P leaves the
digraph (k — 1)-arc-connected.



156 A. Frank

7.5. Minimal and critical graphs

In graph theory it is a typical way to prove things by starting with a graph critical
{or minimal) with respect to a certain property. For example, if this property is
“having no perfect matching” we arrive at the concept of factor-critical graphs
(see chapter 3). Therefore, it is a general program to investigate “critical” graphs.
Typically, we use the adjective “minimal” (resp. critical) if deleting any edge
(resp. node) destroys the property considered.

Call a graph (digraph) G minimally k-edge-connected (k-arc-connected) if G is
k-edge-connected (k-arc-connected) but G —e is not for each edge (arc) e.
Similarly, a graph G is minimally k-connected if < is k-connected but G — e is not
for each edge e¢. Strongly minimally k-connected (or, briefly, minimally k-
connected digraphs) are defined analogously.

A k-connected (k-edge-connected) graph is called critically k-connected (criti-
cally k-edge-connected) if deleting any node destroys k-connectivity (k-edge-
connectivity). The corresponding notions for digraphs are defined analogously.

Actually there are eight classes to be investigated corresponding to the possible
choices: directed or undirected graph, edge- (arc-)connectivity or node-connectivi-
ty, critical or minimal. There are interesting results concerning each but one of
these classes (critically k-arc-connected digraphs have not yet been investigated).
Here we list only the most important theorems. The starting point is a theorem
due to Halin.

Theorem 7.41. (a) (Halin 1969a) Every minimally k-connected graph has at least
one node of degree k.

(b) Every minimally k-edge-connected graph G (with at least two nodes)
contains a node of degree k.

Mader extended these results.
Theorem 7.42 (Mader 1972). Every minimally k-connected graph contains at least
k + 1 nodes of degree k. Furthermore, every circuit of G contains a node of degree
k (Mader 1971b). Every minimally k-edge-connected simple graph contains at least
k + 1 nodes of degree k.

Another interesting generalization of Halin’s result is also due to Mader (1973).

Theorem 7.43. In a simple graph if every degree is at least k + 1, there are two
adjacent nodes s and t which are connected by k + 1 openly disjoint paths.

Let us see critical graphs.
Theorem 7.44 (Mader 1986). Every critically k-edge-connected simple graph G

contains a node of degree k. Furthermore, G contains a node x such that G —x is
(k — 1)-edge-connected.
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To formulate results on critically k-connected graphs we need the following
concepts. In a k-connected graph G a set X is a separating set if G —X is not
connected. A subset C of nodes called an end of G if C is one of the components
in G— X for a k-element separating set X. An atom is an end with smallest
cardinality. The name “atom” is justified by the following.

Theorem 7.45 (Mader 1971a). If C is an atom and K is an end, then ecither
KnC#=0or CCK.

1t is not true, in general, that a critically k-connected graph G has a node of
degree k (or, equivalently, the atoms of G are of cardinality one). But one has the
following.

Theorem 7.46 (Mader 1985c). Every critically k-connected (not complete} graph G
contains two disjoint ends with cardinality at most k/2. Furthermore, G contains

four disjoint ends.

Corollary 7.47 (Chartrand et al. 1972). Every critically k-connected simple (not
complete) graph G contains a node of degree at most |3k/2) and this bound is best
possible. Actually, G contains at least two such nodes (Hamidoune 1980 and

Veldman 1983).
What about directed graphs?

Theorem 7.48 (Mader 1985b)., Every minimally k-connected digraph contains at
least k nodes of in-degree k and at least k nodes of out-degree k.

Conjecture 7.49 (Mader 1979). Every minimally k-connected digraph contains a
node of in-degree and out-degree k.

The k-arc-connected version of this statement is true and plays a central role in
constructing all k-arc-connected digraphs (Theorem 7.9).

Theorem 7.50 (Mader 1974b). Every minimally k-arc-connected digraph contains
at least two nodes having both in-degree and out-degree k.

For critical strongly connected digraphs it is true again that there is a node of
in-degree 1. More specifically, the following holds.

Theorem 7.51 (Mader 1989). Every critical strongly connected digraph with at
least four nodes contains four distinct nodes x,, X5, ¥y, ¥, for which 8 (x,) =
ST (y)=1(=12)

Theorem 7.52 (Mader 1991). Every critically k-connected digraph G contains a
node s for which 8 (s) <2k — 1 or 8" (s) <2k — 1. If G is antisymmetric (that is, if
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{(x, y) is an arc, then (y, x) is not), then G contains a node s for which 6 (s) <
I3k —1) or 87 (s) =< {3k —}]. These bounds are best possible.

>mEm=< this theorem is a consequence of a result of Mader that can be
oo.am.am_.ma as a directed counterpart of Theorem 7.46. It is not true that the
minimum in-degree in a critically k-connected digraph (k = 2) is at most 2k — 1.

7.6. Connected subgraphs

By Whitney’s Theorem 7.5 we know that a k-connected graph contains k& openly
disjoint paths connecting two specified nodes. It is a natural feeling that a highly
connected graphs must contain some other type of subgraphs. In this subsection
we briefly summarize such results. The starting point is a theorem by Dirac.

Theorem 7.53 (Dirac 1960). In a k-connected graph G every subset of k nodes is
included in a circuit. If, in addition, G is non-bipartite, every subset of k — 1 nodes
is included in an odd circuit (Bondy and Lovasz 1981).

Theorem 7.54 (Mesner and Watkins 1967). In a k-connected graph (k=3) a
subset H of k+1 nodes Is included in a circuit if and only if there is no set
X CV— H with |X| = k such that each node in H belongs to a different component
of G—X.

Suppose we want much more: find k(k — 1)/2 openly disjoint paths between &
specified nodes s, ...,s, (one path for one pair). Such a configuration can be
considered as a subdivision of K, with principal nodes 5, . . . , 5,. With sufficiently
high connectivity this property can also be guaranteed.

Theorem 7.55 (Jung 1970, Larman and Mani 1970). If G is 2°**™"'? connected,
then for distinct nodes s,,...,5, there is a subdivision of K, in G having
84,...,8, as principal nodes.

Theorem 7.56 (Héggkvist and Thomassen 1982). In a k-connected graph every
subset of k — 1 independent edges is included in a circuit.

Conjecture 7.57 (Lovdsz). In a k-connected graph every subset of k independent
edges is included in a circuit unless & is odd and the k edges disconnect the graph.

For k = 3 this was shown by Lovisz. The following result, due to Lovisz (1977)
and Gydri (1978), is about partitions of graphs or digraphs into connected parts of
given size.

Theorem 7.58. In a digraph (graph) let S={s,,s,,...,5,} be a set of k nodes
and n,n,,...,n, positive integers such that 3, n,=|V|. Suppose that for any
v EV — S there are k paths from § to v pairwise disjoint except at v. There is a
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partition {V,,V,, ...,V,) of V into k parts such that V,N S = {s,}, [Vi| = n, and the
digraph (graph) induced by V, contains an arborescence rooted at s; (is connected).

7.7. Extremal results

In this last subsection we briefly mention some extremal-type results concerning
connectivity. More detailed accounts are found in Mader (1979) and in Bollobas,
(1978). Let us start with a result on digraphs.

Theorem 7.59 (Dalmazzo 1977). A minimal k-edge-connected digraph D = (V, A)
on n nodes has at most 2k{n — 1) arcs.

Proof. Let s be an arbitrary node of D. By Edmonds’ Theorem 6.6 there are &
edge-disjoint spanning arborescences of root s. Let G, denote the union of these
arborescences. Similarly, there are k edge-disjoint spanning co-arborescences of
root s (a co-arborescence of root s is a directed tree such that re-orienting all of its
edges results in an arborescence of root 5). Let G, denote the union of these
co-arborescences. Clearly, both G, and G, have k(n — 1) arcs and their union is
k-edge-connected from which the result follows. U

Note that the bound in the theorem is sharp as is shown by a digraph obtained
from any tree by replacing each edge uv by 2k parallel arcs among which k are in
one direction and the other k are in the other direction.

Theorem 7.59 immediately implies that a minimal k-edge-connected graph on n
nodes has at most k(n —1) edges. Indeed, if we replace each edge by two
oppositely directed arcs, we obtain a minimal k-edge-connected digraph and then
Theorem 7.59 applies.

Mader proved that for simple graphs a better bound exists.

Theorem 7.60 (Mader 1974b). A minimal k-edge-connected simple graph on n
nodes has at most kn — k(k +1)/2 edges.

Since a minimal k-edge-connected graph must not have a (k + 1)-edge-con-
nected subgraph, Theorem 7.60 is an immediate consequence of the following.

Theorem 7.61 (Mader 1974b). Every simple graph on n nodes with more than
kn — k(k +1)/2 edges has a (k + 1)-edge-connected subgraph.

Again, the bound is sharp as is shown by a graph constructed from a complete
bipartite graph K, ,_, by adding all the possible edges in the k-element part.

8. Multicommodity flows and disjoint paths

8.1, Problem formulation

In this section we address the following problem, called the disjoint paths
problem. Given a graph or a digraph and k pairs of nodes (s5,,4),
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(52, 4,), - - - 5 (54, 1,), find k pairwise openly disjoint paths connecting the corre-
sponding pairs (s,, ¢;). If we are interested in finding edge-disjoint paths we speak
about the edge-disjoint paths problem. In the book “Paths, Flows, and VLSI-
Layout” (B. Korte et al., eds., Springer 1990), several survey papers are included
related to the material of this section {Frank 1990, Schrijver 1990, Robertson and
Seymour 1990].

A capacitated version of the edge-disjoint paths problem is the following. For
every edge of the graph a non-negative capacity is specified and, similarly, for
every pair to be connected a non-negative demand is given. The integer
multicommodity flow problem is that of finding as many paths between the
corresponding terminals as their demands are so that every edge occurs in at most
as many paths as its capacity. If we allow fractional paths as well, we speak about
the multicommodity flow problem or, in short, multiffow problem. That is, a
multicommodity flow is defined by paths P, P,,..., P, and non-negative
numbers A, . . . A, such that each path P, is a path from s, to ¢, and for each edge
e the sum of coefficients assigned to paths using e is at most the capacity of e.

Actually this kind of problem can be considered as a feasibility problem. The
maximization problem is that when no demands are specified and one is interested
in finding a maximum number of paths connecting the corresponding terminal
pairs.

Sometimes it is convenient to mark the terminal pairs to be connected by an
edge. The graph H = (U, F) formed by the marking edges is called a demand
graph while the original graph G = (V, E) is the supply graph. Let us call a circuit
of G+ H a good circuit if it contains precisely one demand edge. In this
terminology the edge-disjoint paths problem is equivaient to seeking for |F|
edge-disjoint good circuits.

The multifiow problem can be formulated as a linear program. One way to do
so is as follows. Let A be a 0-1 matrix the rows of which correspond to the edges
of G the columns correspond to the good circuits. An entry (i, j) is 1 if the edge
corresponding to { is in the circuit corresponding to j and 0 otherwise. Similarty
let B be a 0—(—1) matrix the rows of which correspond to the edges of H, the
columns correspond to the good circuits. An entry (i, j) is —1 if the edge
corresponding to i is in the circuit corresponding to j and 0 otherwise. (The
structure of B is simple: every column has exactly one non-zero entry.) The
multifiow problem is equivalent to the following linear inequality system. Ax <1,
Bx = -1, x=0, where 1 and ~1 are appropriately sized vectors of 1s and —1s,
respectively.

By Farkas’s lemma this m«mﬁa has no solution if and only if there is a vector w
in RZ and a vector z in R” such that 1 (w(e):e € E) - ¥ (z(f): f EF) <0 and
such that %, (w(e): e € C — f) — z(f) =0 holds for every demand edge f and every
circuit C for which C N F = {f}. Obviously, if there is such a w and z, then z can
be chosen so as to satisfy z(f) =dist, (i, v) where f=uwv and dist, (i, v) is the
minimum w-weight of a path in G connecting the end nodes of demand edge f.
We obtain the following.

Theorem 8.1 (Iri 1970, Onaga and Kakusho 1971). The multifiow problem has a
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solution if and only if the
Distance criterion: 2, (dist, (1, v): uv € F) < > (wle): e€EE) (8.1)
holds for every w€ R:.

As general lincar programs can be solved in polynomial time, so is .ﬂ_..m
multifiow problem. Since the constraint matrix above has entries 0, =1 there is a
strongly polynomial algorithm as well (Tardos 1986). This is why we concentrate
only on integer multicommodity flows or disjoint paths.

First we survey results concerning undirected graphs.

Theorem 8.2 (Karp 1975). The undirected (edge-) disjoint path problem (when k is
a part of the input) is NP-complete.

Even et al. (1976) proved that the problem is NP-complete even in the special
case when the demand graph consists of two sets of parallel edges. In other
words, the integer 2-commodity flow problem is NP-complete. On the other hand

we have the following very difficult result.

Theorem 8.3 (Robertson and Seymour 1986b). For fixed k the undirected (edge-
disjoint) disjoint paths problem can be solved in polynomial time.

8.2, Characterizations for edge-disjoint paths

» First, let us concentrate on edge-disjoint paths. A natural necessary condition is

the cut-criterion:
Cut-criterion: dg(X)=d(X) foreveryXCV.

Note that the cut-criterion is a special case of the distance-criterion. We call the
difference d;(X) — dy(X) the surplus of cut A(X) and denote it by s{X). A cut
A(X) is called tight if s(X) =0.

"The cut criterion is not sufficient, in general, as the simple example in fig. 8.1
shows. It is sufficient, however, if the demand graph is a star (that is, the demand
edges share a common endpoint). {This immediately follows from the undirected

edge version of Menger’s theorem.)

$4 S,

8y 52

Figure 8.2.
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.;o next two simplest demand graphs are 2K, (a graph on four nodes with two
disjoint edges) and C; (a triangle). The following characterization for 2K, is due
to Seymour {1980c) and Thomassen (1980a).

Theorem 8.4. Ler G be a graph such that no cut edge separates both of the two
terminal pairs (s, t,) and (s,,t,). There are no two edge-disjoint paths between the
corresponding terminals if and only if some edges of G can be contracted so that
the resulting graph G' is planar, the four terminals have degree two while the other
nodes are of degree 3 and the terminals are positioned on the outer face in this
order: 5,,5,,1,,t;.

Figure 8.2 shows a typical example where the two edge-disjoint paths do not
exist.

If we want ‘ﬁ. Ez.&m between s; and ¢, (i=1,2) the problem becomes NP-
complete. The situation is much better for the other special H mentioned abave,

Theorem 8.5 (Seymour 1980c). If the demand graph H consists of three sets of
parallel m&w.a between three nodes v, v, and v,, the edge-disjoint paths problem
has a solution if and only if the cut criterion holds and

gV UV, UV;) ss(V)) +s(V,) + s(V;)

for every choice of disjoint sets V, with v, €V, (i=1, 2, 3) where s(X) denotes the

surplus and q(X) denotes the number of components C in G — X for which
dg(X)+ d (X)) is odd. *

This result is a rather easy consequence of a theorem of Mader (Theorem 8.23
below) on edge-disjoint T-paths (when |T| =3).

Tnﬂ us call a set X, given G and H, an odd set and the cut A(X) an odd cur
(with respect to G+ H) if dg(X) +dy(X) is odd (or equivalently, the surplus
5(X) is odd). A basic feature of odd cuts is that in any solution to the
edge-disjoint paths problem an odd number of edges of an odd cut, in particular
at least one edge, will not be used. .

What if there are no odd cuts at all, that is, G+ H is Eulerian? The cut
criterion is still not sufficient as is shown in fig. 8.3. Even worse, Middendorf and
Pfeiffer (1990) proved that the edge-disjoint paths problem is NP-complete even
if G+ H is Eulerian.

However, in the special cases listed below the cut criterion proves to be

S; 5,
5 ty

S5 1,

Figure 8.3.
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sufficient. Given a demand graph H =(V, 4), H' will denote the graph arisen
from H by replacing each set of parallel edges by one edge.

Theorem 8.6, Suppose that G + H is Eulerian. In the following cases the cut
criterion is necessary and sufficient for the solvability of the edge-disjoint paths
problem.

(a) H' is 2K, (Rothschild and Whinston 1966b).

(b) H' consists of two stars (Papernov 1976, Seymour 1980a, Lomonosov
1985).

(c) H' is K, (Papernov 1976, Seymour 1980a, Lomonosov 1985).

(d) H' is C; (LLomonosov 1985).

(¢) G is planar and each terminal is on one face (Okamura and Seymour 1981).

(f) G is planar and there are two faces F,, F, such that each demand edge
connects two nodes of either F, or F, (Okamura 1983).

(g) G+ H is planar (Seymour 1981).

(h) G is planar and there are two specified inner faces C, and C, of G. The
demand edges 5,t,, . . . , 531, are positioned in such a way that each s, is on C,, each
t, is on C, and their cyclic order is the same (Schrijver 1989).

Note that part (g) of this theorem immediately follows (by planar dualization)
from a theorem by Seymour asserting that a +1 weighted bipartite graph (planar
or not) has no circuit of negative total length if and only if the edge set can be
partitioned into cuts such that each cut contains at most one negative edge. This is
an equivalent formulation of Seymour’s theorem on the maximum number of
disjoint T-cuts.

As we mentioned earlier the cut criterion is not sufficient, in general, even if
G + H is Eulerian. Sometimes the stronger distance criterion (8.1) helps.

Theorem 8.7 (Karzanov 1987). Suppose that G + H is Eulerian and the demand
edges form a graph arising from K; by adding parallel edges. Then the distance
criterion is necessary and sufficient for the solvability of the edge-disjoint paths
problem. (In other words, if there is a fractional solution, there is an integral one.)

Theorem 8.8 (Karzanov 1994). Suppose that G is planar, G+ H is Eulerian and
each demand edge connects two nodes of one of three specified faces of G. Then
the distance criterion is necessary and sufficient for the solvability of the edge-

disjoint paths problem.

Theorem 8.5 provided an example where parity played a basic rolc in a good
characterization. Here are two more cases.

Theorem 8.9 (Frank 1990). Suppose that G + H is planar and the demand edges
are on two faces of G. The edge-disjoint paths problem has a solution if and only if
the cut criterion holds and dg, (X NY) is even for every pair of tight sets X, Y.
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This theorem is a generalization of an earlier theorem of Seymour (1981) where
H consisted of two sets of parallel edges. Sebd (1993) proved that if G + H is
planar and the number of demand edges nodes is bounded by a constant, then
there is a polynomial time algorithm to solve the integer multifiow problem.
Another result, due to Schrijver (1990) asserts, that if G + H is planar and the
number of faces covering all the terminal nodes is bounded by a constant, then
the edge-disjoint paths problem is polynomially solvable. On the other hand, the
problem is NP-complete if there is no such a bound (Middendorf and Pfeiffer
1990).

Theorem 8.10 (Frank 1985). Suppose that G is planar, the terminals are on the
outer face and the degree of every node not on the outer face is even. The edge
disjoint paths problem has a solution if and only if 3. 5(C,) = q/2 for every family
(Cy, Gy, ..., C) of cuts (k <|V|) where g denotes the number of odd components
inG-C —-C,—-- —C, and s(C) is the surplus of C.

To close this subsection we mention a theorem by van Hoesel and Schrijver
(1986) where topology plays a role.

Theorem 8.11. Let G be a planar graph embedded in R*. Let O denote the interior
of the unbounded face and I the interior of a specified bounded face. Let C,,
Cy, ..., C, be curves in R® — (I U O) each of which connects a node on I U O with
a node on I\U O so that for each node v of G the degree of v has the same parity as
the number of curves ending at v. Then there exist pairwise edge-disjoint paths P,

Py, ..., P in G so that P, is homotopic to C, in R®—(OU) (i=1,2,.... k) if
and only if for each dual path Q from I'U O to IU O the number of edges in O is
not smaller than the number of times Q necessarily intersects the curves C,.

Note that this theorem generalizes part (¢) of Theorem 8.6. It is an open
problem to find a common generalization of Theorems 8.6(f) and 8.11. This last
theorem is a prototype of theorems belonging to the area one may call homotopic
paths packing. An excellent survey of this topic occurs in Schrijver (1990).

8.3. Sufficient conditions for edge-disjoint paths

We call a graph k-linked on the edges if for any choice of k pairs of terminals

there are & edge-disjoint paths connecting the corresponding terminal pairs.
Theorem 8.4 implies that a 3-edge-connected graph is 2-linked on the edges.

Actually such a graph is 3-linked as the following even stronger result shows.

Theorem 8.12 (Okamura 1984). In a graph three terminal pairs (s,,1,) (i=1,2,3)
are specified such that for each i there are three edge-disjoint paths connecting s,
and t,. Then there are 5;t-paths (i = 1,2, 3) pairwise edge-disjoint.
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Okamura’s theorem is an answer to the following conjecture of Thomassen,
when &k =3.

Conjecture 8.13 A k-edge-connected graph is k-linked on the edges if k is odd
and (k — 1)-linked on the edges if & is even.

Note that by Tutte’s Theorem 6.14 a (2k)-edge-connected graph always has k
edge-disjoint spanning trees and therefore it is w-::._noa on the edges.
The following theorem gets very close to the conjecture.

Theorem 8.14 (Huck 1991). A k-edge-connected graph is (k — 1)-linked on the
edges if k is odd and (k —2)-linked on the edges if k is even,

We note that Thomassen’s conjecture is open for k =5. .
In certain cases the cut condition is not strong enough to ensure the existence of

the required paths but the demands can almost be met.

Theorem 8.15 (Korach and Penn 1992). Suppose that G + H is Ea.:m? for ma.nr
terminal pair (5,,1,) an integer demand d, is given and the cut condition x&&. E:..:
respect to d. Then there are d, — 1 paths connecting s, and 1, for each terminal pair
such that all these paths are pairwise disjoint.

Theorem 8.16 (Itai and Zehavi 1984). Assume that in a graph G .@,.L,L are
terminal pairs (i = 1, 2) such that there are k edge-disjoint ﬁn;ﬁ. n.omzmn::m 5; and t,
(i=1,2). Then for each m, 0<m <Kk there are k edge-disjoint paths P, 5,
Syyevis 8 O Qss oo -y Qupyoy Such that each S, connecis s, and t,, each Q,;
connects s, and t, and P connects either s, and t, or 5, and ;.

8.4. Node-disjoint paths

We call a graph k-linked if for any choice of k pairs of Sn_..._m:m_m there are k
openly disjoint paths connecting the corresponding terminal pairs. A counter-part
of the cut-condition is: .

Node-cut condition: No subset S of nodes can separate more than |§| terminal
vm%_m:m condition is sufficient if the terminal pairs share a common node (a version
of the node-Menger theorem) but not in general.

Theorem 8.17 (Thomassen 1980a, Seymour 1980c). Let G be n.mq%} such that no
cut node separates s, from t, and s, from t,. There are no disjoint paths vmm%mma 5
and t, and between s, and t, if and only if G arises from a planar graph G ,.S_:m__.m
the four terminals are on the outer face in this order 5, 5,, {1, b3, by placing an
arbitrary graph into some faces of G' bounded by two or three edges.

The problem was solved algorithmically by Shiloach (1980).
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Corollary 8.18 (Jung 1970). A 4-connected non-planar graph is 2-linked. A
6-connected graph is 2-linked.

Here the second statement follows from the first one since a planar graph
always has a node of degree at most 5. Note that there is a 5-connected planar
graph that is not 2-linked. For higher connectivity we have the following.

Theorem 8.19 (Jung 1970, Larman and Mani 1970). A 2** connected graph is
k-linked.

It is not known if 2** can be replaced by a linear bound. The natural 2k + 2 is
not enough as can be seen from a K, _, with edges x,y,,...,x,y, removed (an
example due to Strange and Toft 1983).

The following pretty result is not difficult to prove.

Theorem 8.20 (Robertson and Seymour 1986a). Suppose that G is planar and the
terminals are on the outer face. The disjoint paths problem has a solution if and
only if the node-cut condition holds and there are no two ““crossing” terminal pairs
(that is, any two pairs (s(,t,) and (s,,t,) are in this order on the outer face;
§1, 8,85, 1),

Robertson and Seymour also found a characterization for the disjoint paths
problem when G is planar and the terminals are positioned on two specified faces.

8.5. Maximization

So far we have studied multicommodity flow problems of feasibility type. One can
also be interested in the maximization form: Given a graph G = (V, E) with
non-negative integer capacity function ¢ on the edges and a set of terminal pair
(51, £1)s .« 5 (54, 2,), find flows between s, and ¢, (i=1,2,...,k) that maximize
the sum M of flow values under the condition that for each edge e the sum of
edge-values of flows on this edge is at most c(e). Let us denote by M, the
maximum sum of flow values if we restrict ourselves to integer flows.

We will use the notation 4, (v) for the sum of capacities of edges incident to v.
Let V|, V,,...,V, be a family # of disjoint subsets of V such that each demand
edge connects different V,. By a multicut defined by 2 we mean the set of edges
uv of G such that u €V, v £V, for some i. The capacity of a multicut is defined to
be X d(V;)/2. Let m denote the minimum capacity of a multicut. Let m, denote
the minimum capacity of a cut separating each terminal pair (if there is any).
Obviously, m,=zm=M =M, If k=1, then m, = M, by Menger’s theorem.

Theorem 8.21 (Hu 1963). If k=2, m; =M. If k=2 and d_(v) is even for each
non-terminal node, then m, = M, (Rothschild and Whinston 1966a).

Theorem 8.22 (Lovész 1976b, Cherkasskij 1977b). If the demand edges form a
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complete graph induced by T (T CV), then m = M. In addition, if d_(v) is even
forveV-—T, then m=M,

Generalizing this result to non-Eulerian graphs, Mader (1978b) found the
following characterization for M,.

Theorem 8.23. Let G = (V, E) be a graph and T a specified subset of nodes. u.:.m
maximum number of edge-disjoint paths connecting distinct elements c..x T is
min[} d(V,) — g,(UV,)]/2 where the minimum is taken over all collections of
disjoint subsets V,, V,, ..., Viy for which |V,NT|=1. (Here d(X) denotes the
edges leaving X and q,(X) denotes the number of components Cof G—X for
which d(C) is odd.)

To formulate a node-disjoint version of Theorem 8.23 mcgomm that T is
independent. For a subset X of V and a subgraph G’ of G let b(X; Q y:=|{x€X:
there is an xy € E(G') with y & X}|. E(X) denotes the set of edges induced by X.

i -disjoint
Theorem 8.24 (Mader 1978c). The maximum :E.:&mw of openly node-disj
paths connecting distinct members of T is equal to min([V,| + X [b(V;; G —V,)/2])

where the minimum is taken over all collections of disjoint subsets V;,,Vy, . . ., 5.&
V—T (k=0) (where only V, can be empty) such that G —V,— IJ(EWV): i=
1,...,k) contains no path connecting distinct nodes of T.

This result can be regarded as a common generalization of Menger’s Boo.RB
and the Berge-Tutte theorem. An immediate corollary of Theorem 8.24 is a

result of Gallai (1961).

Corollary 8.25. The maximum number of disjoint paths having end nodes in T is
min(|K]+ & ||C N T|/2): K CV) where the sum is taken over the components C

of G- K.

Let us turn back to edge-disjoint paths. A common generalization of Theorems
8.21 and 8.22 is as follows.

Theorem 8.26 (Karzanov and Lomonosov 1978). Let H= Q‘,..m. ) &mwwoﬂm the
demand graph. If the maximal independent sets of H can be ﬁa&.ﬁca& into two
classes such that both classes consist of disjoint sets (which is equivalent to saying
that the complement of H is the line graph of a bipartite graph), thenm=M. In
addition, if d.(v) is even for v EV - T, then m = M, (Karzanov 1985).

A proof relying on the polymatroid intersection a._oon.wE of Edmonds can be
found in Frank et al. (1992). Let us continue our survey with two results where no

parity restrictions are imposed.

Theorem 8.27 (Lomonosov 1983). Suppose thatk=2and G+ H is planar. Then
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M, is either m-— 1orm. M,=m— 1 if and only if there are three cuts of value m
{each separating both (s;, t,) (i = 1, 2)) the union of which includes a cut B of odd
capacity so that B does not separate (s;,¢t,) (i =1, 2).

Note that in Theorem 8.27 m = M immediately follows from Theorem 8.6(g).

Theorem m.u.m AW_QE._»: et al. 1970), If every node of vEV —(s,,...,5,)—
(t,, e y 1) I adjacent to a member of at least k — 1 terminal pairs and the
terminals form an independeni set of G, then m=M,.

8.6. Directed graphs

All the results we have considered so far in this section concerned undirected
m_.m.-vrm. Let D =(V, A) be a digraph and let (5., 1) (i=1,2, ..., k) be (ordered)
pairs of terminals. The problem is to find (arc-) disjoint paths from s, to ¢, Let
H = (U, F) denote the demand graph, where F= {{t,,s,):i=1,2,.. ., n.&. We call
a n_nmn.ﬂna circuit of D + H good if it contains precisely one demand arc. Then the
M.n;..amwuoiﬂ paths problem is equivalent to finding k arc-disjeint good circuits of
) Unfortunately, much less is known about directed graphs. One negative result
is as follows.

Theorem 8.29 (Fortune et al. 1980). The (arc-) disjoint paths problem is NP-
complete for k=2.

Notice that the corresponding undirected problem is tractable {see Theorem
m..uv. In what follows we briefly list some special cases when good characteriza-
tions and/or polynomial time algorithms are available.

The following criterion is clearly necessary in the arc-disjoint case:

Directed cut criterion: 8 ,(X) =6 4(X) for every XCV. lf 5,=--- =5, and
= =t then the directed cut criterion is sufficient as well A&Hnnﬂom arc-
version of Menger’s theorem). A counter-part of Theorem 8.8(a} is also true.

..E_mc_.m:.._ 8.30. If H consists of two sets of parallel arcs and D + H is Eulerian (that
s, S.m E..&m.w%m of any node is equal to the out-degree), then the directed cut
Q:Mﬂc: is necessary and sufficient for the solvability of the arc-disjoint paths
problem.

Proof. Assume that H consists of «, arcs from ¢, to 5, (i =1,2). By Menger’s
:..non.a—.z_ it follows from the hypothesis of the theorem that there are «
arc-disjoint paths in D from s, to ¢,. If we leave out these paths and the QH
anam.a..u .mamom from D + H we obtain an Eulerian digraph. This partitions ::m
arc-disjoint circuits, and hence it contains a, edge-disjoint paths from s, to¢,. 0O
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In the example in fig. 8.4 the directed cut criterion is satisfied but there is no
solution to the directed edge-disjoint paths problem.

The reason is that the following necessary condition, called covering criterion, is
violated: the directed circuits of D + H cannot be covered by less than k arcs.

Theorem 8.31. When D + H is planar and D is acyclic the directed edge-disjoint
paths problem has a solution if and only if the covering criterion holds.

Proof. By planar dualization we obtain from the Lucchesi~Younger Theorem
2.15 that in a planar digraph the maximum number of directed circuits is equal to
the minimum number of arcs covering all the directed circuits. Since D is acyclic
the set A(H) of demand arcs covers all directed circuits of D + H. By the
covering criterion this is a minimum covering of directed circuits and hence there
are k =) A(H))| arc-disjoint circuits in D + H which must be good circuits.

In the following theorem D may be non-planar but the number k of demand
arcs is considered as a constant.

Theorem 8.32 (Fortune et al. 1980). In acyclic digraphs the {(arc-) disjoint paths
problem can be solved in polynomial time if k is fixed.

In the special case k =2, Thomassen (1985) found a complete description of
acyclic digraphs having no solution to the disjoint paths problem. The core of his

result is as follows.

Theorem 8.33. Let us be given an acyclic digraph D =(V, A) and terminal pairs
(s,.8,)s (2, 8,) such that V| =5, 8~ (v), 8" () =2 for each non-terminal node v
and 8 (s,) =8 (s,)=8"(t,) =8 *(t,) = 0. If there are no disjoint paths from s, to
t, and from s, to't,, then D is planar and has a plane representation in such a way
that s,, t;, t,, S, are on the outer face occurring in that cyclic order.

Ibaraki and Poljak (1991) solved the arc-disjoint paths problem when k=3 and
D + H is Eulerian. Let D be an Eulerian digraph with three distinct specified
nodes a, b, ¢, called terminals. The three-terminal problem consists of finding
(altogether three) arc-disjoint paths from a to b, from b to ¢ and from c to a.
Clearly, this is a special case of the three arc-disjoint paths problem but Ibaraki
and Poljak observed that, conversely, the three arc-disjoint paths problem can
also be easily reduced to the three-terminal problem.

Suppose that D is a planar digraph with no cut-nodes that has a plane
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representation such that each face is bounded by a directed circuit, the terminals
have degree 2, and they lie in one face where their order with respect to the
orientation of the face is a, ¢, b. It is casy to see that in such case the
three-terminal problem has no solution. Therefore we call such a representation
bad.

Theorem 8.34 (lbaraki and Poljak 1991). Given an Eulerian digraph D with
terminals a, b, c, the three-terminal problem has a solution if and only if D cannot
be contracted to a planar digraph that has a bad plane representation.

As far as the maximization problem is concerned for digraphs we mention the
following (rather easy) counter-part of Theorem 8.22.

Theorem 8.35 (Frank 1989). In an Eulerian digraph D =(V, A) the maximum
number of arc-disjoint paths connecting distinct nodes of a specified subset T of V
is equal to the minimum of YL 8 (V) over all families of disjoint subsets
VioVo, .. Vi of V for which [V,NT|=1(i=1,2,...,|T|).

We close this section by mentioning an interesting sufficient condition by
Shiloach (1979). Let us call a digraph D = (V, A) k-linked on the arcs if for any
choice of k pairs {s,,#},..., (s, 2} of (not necessarily distinct) terminals there
are arc-disjoint paths P, from s, to 1, (i =1, ..., k). Obviously such a digraph is
strongly k-arc connected (that is every non-empty proper subset of nodes has k
entering arcs.)

-Theorem 8.36. A strongly k-arc connected digraph is k-linked on the arcs.

Proof. Add a new node r to D and new arcs (r,5,) (i=1,2,...,k) and apply
Edmonds’ disjoint arborescence Theorem 6.9. O

The theorem also easily follows from Theorem 7.30 of Mader.
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