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In 1935 H. Whitney defined the notion of matroid in:
H. Whitney (1935). On the abstract properties of linear dependence. American J.
Math. 57, 508-533,

His main motivation was to capture the fundamental properties of linear
independence by setting up an axiomatization for abstract independence. From this
approach the following definition is quite natural. A matroid M is a pair {S,7)
consisting of a finite ground-set S and a non-empty family 7 of subsets of 9 satisfying
the following axioms.

(I1) Each subset of every member of I belongs to T,
(12) for every subset X of S, all mazimal subsets of X belonging to I have the same
cardinality (X)), colled the rank of X.

(A member I of F is called maximal in X if I C X and there is no J € I with
I ¢ J G X.) The members of F are called independent sets (while all other subsets
of S are dependent. )

Since the rank-functions of two distinct matroids are distinct, by investigating the
properties of r one may obtain information about the structure of the matroid. A rank-

1Work supported by the Hungarian National Foundation for Scientific Research Grant, OTKA
T17580.
Annotated Bibliographies in Combinatorial Optimization, edited by M. Dell’ Amico, F. Maffioli and
S. Martello (©1997 John Wiley & Sons, Ltd.
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function r is clearly non-negative, integer-valued and monotonously increasing in the
sense that r(X) > r(Y) whenever X D Y. It is also subcardinal, that is, r(X) < | X]|
for every X C 8. Moreover, it is not difficult to prove that r is submodular, that is,

X)) +r(¥Y) > r(XUY)+r{XNY) for every X,Y C §. (1)

Conversely, Whitney proved that any set-fuction admitting these properties is the
rank-function of a matroid.

Later, researchers realized that among the properties of a matroid rank-function
the submodular inequality is the most important one and they started to investi-
gate submodular set-functions which are not necessarily non-negative or monotonous
or sub-cardinal. Though submodular functions were introduced earlier, supermodular
functions are not less important in applications. (A set-function is called supermodu-
lar if the reverse inequality holds in (1), in cther words, the negative of a submodular
function is supermodular.)

J. Edmonds (1970). Submodular functions, matroids, and certain polyhedra. R.
Guy, H. Hanani, N. Sauer, J. Schonheim {eds.). Combinatorial Structures and their
Applications, Gordon and Breach, New York, 69-87.

This is a seminal paper including a systematic study of submodular functions. As a
main contribution, Edmonds recognized that certain polyhedra, called polymatroids,
can be associated with submodular functions, and then linear programming ideas may
be used. He also showed that there is a one-to-one correspondence between polyma-
troids and polymatroid functions (a set-function having all the properties of a matroid
rank-function except subcardinality).

Relying on Edmonds’ ideas, the notion of polymatroids was later extended to basis
polyhedra, submodular polyhedra and g-polymatroids. Another early paper on the use
of submodular function is the following.

L. Lovasz (1970). A generalization of Kénig's theorem, Acta. Math. 21, 443-446.

This is the first place where a general framework concerning graphs and submodular
functions is introduced. Later several other abstract models have been set up to bring
graphs and sub- or supermodular functions together.

Most notable is the notion of submodular flows due to Edmonds and Giles (see
§§3.1). Let G = (V, E) be a directed graph, b a submodular function on the subsets
of Viand f: V —- R, g: V — R two functions with f < g. Avectorz: F — R is
called a submodular flow if f < z < g and > (z(e) : e enters Z) - 3 (z(e) : e leaves
Z) < b(Z) for every Z C V. The fundamental result of Edmonds and Giles is that
this system is totally dual integral (TDI).

Another successful way of abstraction has been to bring partially ordered sets and
sub- or supermodular functions together. For example, lattice polyhedra, a notion due
to A. Hoffman and his co-workers, belong to this category [Hoffman 1982] (see §§1.2).
Another rich area where partially ordered sets and submodular functions are combined
is the theory of greedoids [Korte, Lovdsz and Schrader 1991] (see §§1.1). A greedoid
may be defined by a pair (S, F) where F is a family of subsets of 5, called feasible
sets, satisfying the second independence axiom of matroids.

Before proceeding to a more systematic overview of the material let me mention
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a predecessor of this work, an annotated bibliography on submodular functions and
related topics, written by E. Lawler (who passed away untimely in 1994).

E. Lawler (1985). Submodular functions and polymatroidal optimization. M.
O’hEgearteigh, J.K. Lenstra, A.H.G. Rinnooy Kan {eds.). Combinatorial Optimiza-
tion: Annotated Bibliography, John Wiley and Sons, New York, 32-39.

In this paper Lawler finishes his overview with the year 1984,

Let us take up the thread with this year. That is, we will concentrate on works which
have appeared since 1984 but some important earlier papers will also be mentioned,
Readers interested in recent developments of the topic are in a good position since the
last dozen of years produced quite a few excellent books and survey papers.

1 Books and Surveys

1.1 Books

A. Recski (1989). Matroid Theory and its Applications in Electric Network Theory
and Static, Springer Verlag, Berlin, and Akadémiai Kiadé, Budapest.

This is a basic textbook that can be useful for beginners and teachers of the topic, as
well. Researchers will enjoy the book being a rich source of engineering applications of
matroids and submedular functions. Rigidity problems and automatized recognition
of line-drawings are among the applied areas discussed in Recski’s book.

A more detailed discussion of these two topics can be found in the following two
books, respectively.
J. Graver, B. Servatius, H. Servatius (1993). Combinatorial Rigidity, Graduate Studies
in Mathematics 2, Amer. Math. Soc.
K. Sugihara (1986). Machine Interpretation of Line-drawings, MIT Press, Cambridge,
Mass.

T. Ibaraki, N. Katoh (1988). Resource Allocation Problems - Algorithmic Approaches,
The MIT Press Series in the Foundation of Computing.

A third, interesting application-oriented book that includes submodular functions.
Section 8 of this book summarizes the basics of submodular functions while Secticn
9 is an exciting exhibition of resource allocations problems and their solutions under

submodular constraints.

K. Murota {1987). System analysis by graphs and matroids. Structural solvability and
controllability, Algorithms and Combinatorics 3, Springer-Verlag, Berlin.

One more recommendable application-guided monograph concerning matroids,
graphs and linear algebra along with their applications in engineering.

More theoretically oriented readers are recommended the following works:
K. Triimper {1992). Matroid Decomposition, Academic Press, San Diego.
This book covers a great number of the deep results concerning matroid minors,
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decompositions, and representations, including classical theorerns of Tutte and of Sey-
mour, as well as the fundamental research achievements due to the author of the book.

J.G. Oxley (1992). Matroid Theory, Oxford Science Publications, Oxford.
This is another highly recommendable thorough treatment concentrating on minors,
decompositions and representations.

L. Lovész, A. Recski (eds.) (1985). Matroid Theory, North-Holland, Amsterdam.

N. White (ed.) (1986). Theory of Matroids, Cambridge University Press, Cambridge

N. White (ed.} (1992). Matroid Applications, Cambridge University Press, Cambridge
These books are collections of papers on matroids. Some of them will also be men-

tioned in the sequel.

M. Grotschel, L. Lovész, A. Schrijver (1988). Geometric Algorithms and Combinatorial
Optimization, Springer Verlag, Berlin.

This monograph describes in detail general-purpose algorithms, such as the ellipscid
methods and the basis reduction algorithm, and shows several applications of these
methods concerning matroids and submodular functions. Perhaps the most important
of these applications is a polynomial time algorithm to minimize a submodular func-
tion. Algorithms concerning submodular flows are also exhibited.

Among the many possible generalizations of matroids we refer here to two: greedoids
and oriented matroids. The books concerning these topics are:
B. Korte, L. Lovész, R. Schrader (1991). Greedoids, Springer-Verlag, Berlin.
A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler (1993). Oriented Ma-
trpids, Cambridge University Press, Cambridge.
A. Bachem and W. Kern (1992). Linear Programming Duality: An Introduction to
Oriented Matroids, Springer, Berlin.

Multimatroids and A-matroids form yet another generalization of matroids, (A.
Bouchet, who developed a great part of this flourishing theory, is writing a book on
the topic.) Last but not at all least comes the following indispensible monograph on
submodular functions:

5. Fujishige (1991). Submodular functions and optimization. Ann. Discr. Math. 47.

Several models concerning submedular functions and graphs along with their re-
lationship are analyzed. The reader may also read about the algorithms which are
far-reaching extensions of classical max-flow algorithms. Some non-linear optimiza-
tion problems concerning submodular functions are also discussed.

G.L. Nemhauser, L.A. Wolsey (1988). Integer and Cominatorial Optimization, Wiley,
New York.

"This book includes a chapter on the optimization aspects of matroids and submod-
ular functions.

R. Graham, M. Gritschel, L. Lovész (eds.) (1995). Handbook of Combinatorics,
Elsevier Science, Amsterdam.

This monumental handbook covers the whole body of combinatorics and includes

Matroids and Submodular Functions 69

several survey papers concerning our topics (see the beginning of next subsection).

1.2 Survey papers

D.J.A. Welsh (1995). Matroid theory: fundamental nozomvwm..w. Graham, M.
Grétschel, L. Lovész (eds.). Handbook of Combinatorics, Elsevier Science, Amsterdam,

481-526. . . .
This paper provides a concise introduction starting from the basic concepts an

ending with an outline of the most recent developments.

P.D. Seymour (1995). Matroid minors. R. Graham, M. Grétschel, L. Lovész (eds.).

Handbook of Combinatorics, Elsevier Science, >Emnmamn.c_ mu.w.mm@. . .
This paper will be unavoidable for those studying or 5<mm5m.m§.=m Emﬂwﬁ_ minors

and decompositions. Likewise, the following article will serve a similar role in the area

of matroid optimization. o . “
R.E. Bixby, W.H. Cunningham (1995). Matroid optimization and mﬁo:ﬂ_:.ﬁm. W.. Ta-
ham, M. Grétschel, L. Lovész (eds.). Handbook of Combinatorics, Elsevier Science,

Amsterdam, 551-609.

U. Faigle (1987). Matroids in combinatorial ovsﬂwmmﬂob.. N. ﬁ;ﬁ.m (ed.).
Combinatorial Geometries, Encyclopedia of Mathematics and its Applications, 29,
Cambridge University Press, Cambridge, 161-210.

One more survey paper from the same area.

A. Bouchet (1995). Covering and A-covering. E. Balas, J. Clausen (eds.). b”:“mumﬂ
Programming and Combinatorial Optimization, Lecture Notes in Computer Science,
920 Springer, Berlin 228-244.

A pgood introduction to A-matroids.

A. Frank, E. Tardos (1988). Generalized polymatroids and submodular flows. Math.

Progrem. (B) 42, 489-563. . o X
As far as submodular functions are concerned, one may cbtain some insight of sub-

modular fiows, polymatroids and their relationship from this paper.

A. Schrijver (1984). Total dual integrality from directed graphs, n_.ommmum mme.:om E.&
sub- and supermodular functions. W. R. Pulleyblank (ed.). Progress in Combinatorial
Optimization, Academic Press, New York, 315-361. . . )

An excellent cross-section for a reader interested in the relationship between the
several models and frameworks concerning submodular functions and graphs.

The following two survey papers concentrate on the applications of submodular
functions in graph theory. ‘
A. Frank (1993). Submodular functions in graph theory. Discr. Math. 111, wmﬁawpm..
A. Frank (1993). Applications of submodular functions. K. Walker ?Hm.u. mcwtmem.ﬁ
Combinatorics, London Math. Soc. Lecture Note Series 187, Cambridge University

Press, Cambridge, 85-136.
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m.um.,nwu-r GWwMV Packing paths, circuits, and cuts — a survey. B. Korte, L. Lovész
-J. Promel, A. Schrijver (eds.). Paths, Flows and VLSI-Layouts, Spri Ve ,
Berlin, 47-100. youts, Springer Verlag,
A. Frank (1994). Connectivity augmentation problems in network design. J.R. Birge,
K.G. Murty (eds.). Mathematical Programming: Stafte of the Art, The University of
Michigan, 34-63.

Submodular functions turned out to be a basic proof technique in edge-disjoint
paths problems as well as in connectivity augmentation problems. These areas are
surveyed, respectively, in these papers.

I promised to mention only few works appeared before 1984, but there are two
fundamental works which certainly cannot be left out from any overview.
A. Hoffman (1982). Ordered sets and linear programming. L. Rival (ed.). Ordered Sets
D. Reidel Publishing Comp., 619-654. ,

This is a very exciting survey on lattice polyhedra and other models introduced and
analyzed by Hoffman and his co-workers. In my view this area deserves more attention
than it has got in the last decade. One beautiful application of lattice polyhedra is
the strikingly simple derivation of fundamental theorems of Greene and of Greene and
Kleitman on optimal families of chains and antichains of a partially ordered set.

L. Lovész (1983). Submodular functions and convexity. A. Bachem, M. Grétachel,
meﬂwom..wm ({eds.). Mathernatical Prograrnming: the State of the Art, Springer, Berlin,

. This is another basic survey on the close parallel of convex functions and their
discrete counter-parts, submodular functions. For brand-new developments in this di-
rection, see §3.

M. Iri {1983). Applications of matroid theory. A. Bachem, M. Grétachel, B. Korte
{eds.). Mathematical Programming: the State of the Art, Springer, Berlin, 160-201.
Another important overview on the applicability of matroids.

After mentioning these older papers, let me finish the list of surveys with a very
new one.
R.E. Burkard, B. Klinz, R. Rudolf (1996). Perspectives of Monge properties in
optimization. Diser. Appl. Math. 70, 95-162.

A mﬁvmn._u survey {with 130 itemns in its reference list),which ig highly recommendable
MMH, those interested in greedy algorithms, a method strongly related to submodular

nctions.

2 Submodular Functions

2.1 Minimization

One of the .Enmﬂ exciting problems of the area is minimizing a submodular function.
,H._:won_u\ existing polynomial time algorithm for this purpose uses the ellipsoid method
[Grétschel, Lovész and Schrijver 1988] (see §1.1). However there are important special
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W.H. Cunningham (1985). On submodular function minimization. Combinatorica 5,
185-192.

This solves the problem for “small” submodular functions. The method relies on
the theory of polymatroids and may be considered as a clever refinement of Edmonds’
matroid-partition algorithm.

M. Queyranne (1996). A combinatorial algorithm to minimize symmetric submodular
functions. Math. Program. {B), to appear.

“Phis recent result settles completely the minimization problem for symmetric sub-
modular functions: the algorithm is strongly polynomial. The surprising thing here
is that no polymatroid theory is needed at all. The method is an extension of the
revolutionary algorithm of {Nagamochi and Ibaraki 1995] {see §5) to compute the
edge-connectivity of an undirected graph. Queyranne’s algorithm may also be special-
ized to compute the minimum cut of a hypergraph.

M.X. Goemans, V.S. Ramakrishnan (1995). Minimizing submodular functions over
families of sets. Combinatorica 15, 499-541.

In some cases one is interested in the minimum of a submodular function over
the members of a certain family of sets. Already the book of [Grdtschel, Lovész and
Schrijver 1988] (see §1.1) includes non-trivial results in this direction and an elegant
extension is found in this paper.

2.2 Intersection theorem

Perhaps the most important central result of the whole theory is the matroid inter-
section theorem of Edmonds. Its non-weighted special case asserts that two matroids
have a k-element independent set in common if and only if there is ne bi-partition
{X1, Xz} of the ground-set for which ry (X1) + r2(X2) < k where 7y and 2 are the
rank-functions of the matroids. This theorem has a great number of applications and
gserves as a root to many extensions. One of them, the polymatroid intersection theo-
rem, was already found by Edmonds in his paper of 1970 mentioned above.

A. Frank (1984). Finding feasible vectors of Edmonds-Giles polyhedra. J. Combin.
Theory B 36, 221-239.

This paper consider an interesting version of the polymatroid intersection theorem
the discrete separation theorem. It asserts that, given integer-valued super- and sub
modular functions p and b, there is an integer-valued modular function m for whicl
p < m <b. (A set function satisfying (1) with equality is called modular.) Relatec
results are investigated in:

J. Kindler (1988). Sandwich theorems for set functions. J. Math. Analysis Appl. 133

529-544.

F.D.J. Dunstan, A.W. Ingleton, D.J.A. Welsh (1972). Supermatroids. D.J.2
Welsh, D.R. Woodall {eds.}. Combinatorics, The Institute of Mathematics and it:
Applications, London, 72-122.



72 A. Frank

A difficult extension of Edmonds’ matroid intersection theorem concerns distribuy-
tive supermatroids which have been introduced in the following paper. A distributive
supermatroid is a family F of ideals of a partially ordered set satisfying the following
axioms. (1) A € F,(2)if X CY € Fand X isanideal, then X € F,(3)if X CY € F
and |X| < |¥|, then there is an element z € X — Y such that Y U {z} € F.

E. Tardos (1990). An intersection theorem for supermatroids. J. Combin Theory B
50, 150-159.

In this paper an intersection theorem is described concerning two distributive su-
permatroids defined on the same partially ordered set.

A. Schrijver (1985). Supermodular colorings. L. Lovdsz, A. Recski (eds.). Matroid
Theory, North-Holland, Amsterdam.

This paper present another type of intersection theorem concerning common super-
modular colourings of two supermodular funetions.

E. Tardos (1985). Generalized matroids and supermodular colorings. L. Lovész, A.
Recski (eds.). Matroid Theory, North-Holland, Amsterdam.
Tardos discovered a connection between supermodular colourings and generalized

polymatroid intersection and provided this way an alternative proof of Schrijver’s
theorem.

2.3 Greedy algorithms

Any introductory course on matroid theory certainly discusses the greedy algorithm.
‘For a given weight-function w on the ground-set of the matroid, the greedy algorithm
consists of choosing step by step a not-yet-chosen element of largest positive weight
in such a way that the set of chosen elements form an independent set of the matroid.
The greedy algorithm theorem asserts that the final independent set is of maximum
weight. Tt is useful to realize that the independence axioms of matroids may be in-
terpreted as requiring that for every 0 — 1 weight-function w the greedy algorithm
computes correctly a maximum weight independent set. The basic algorithm has been
extended in several directions and there is a vast literature of work on greedy algo-
rithms related to matroids and extensions. For a survey, see the paper of [Burkard,

Klinz, Rudolf 1996] (see §1.2). An early interesting extension of the matroid greedy
algorithm is the following.

D. Kornblum (1978). Greedy algorithms for some optimization problems on a lattice
polyhedron, Ph. D. Thesis, Graduate Center of the City University of New York.
This thesis was written under the guidance of A. Hoffman who has several papers
on greedy algorithms. See, for example:
A. Hoffman (1985). On greedy algorithms that succeed. I. Anderson (ed.). Surveys in
Combinatorics, London Math. Soc. Lecture Notes Series, 103, Cambridge University
Press, Cambridge, 97-112,
In these papers the original matroid greedy algorithm is generalized.

There are other greedy-type algorithms, primarily those concerning the so-called

Matroids and Submodular Functions 73

i til recently to have any connection to
Monge-property, which have not been known un .
mszsmo&ﬂ_mww@. _.H_Ew following enlightening paper found a bridge between the two large

classes of greedy algorithms.

i lass of greedily solvable
. , F. Spieksma, F. Tardella (1993). A general ¢ .
W\me.pwwww—.u“m. G. Rinaldi, L. Wolsey (eds.). Proc. of the $rd IPCO Conf., Erice,

385-399. . . ]
This work contains a common generalization of Edmonds polymatroid greedy al

i i for transportation problems when the
orithm and the greedy algorithm of Hoffman . .
moﬂ,. function satisfies the Monge property. The algorithm has been further generalized

in the following paper.

U. Faigle, W. Kern (1996). Submodular linear programs on forests, Math. Program.

206. ) )
qmywwwwhq this is a two-phase greedy algorithm in the sense that first the primal

i i al is solved greedily. A simi-
i am is solved in a greedy way and then the du .
#H.mamu_ankuwmm Mﬂo.vrmmm greedy approach is described for another model in the next paper.

A. Frank (1996). Increasing the rooted connectivity of e digraph by one, submitted to

Mathematical Programming Ser. B. o ,
This algorithm may be considered as a common generalization of Fulkerson’s

minimum cost arborescence algorithm and Kornblum's algorithm for (supermodular)
lattice polyhedra.

3 TFrameworks for Sub- and Supermodular Func-
tions

Sub- and supermodular functions are often considered in connection with oﬂ:ﬂ
structures like directed or undirected graphs, partially ordered mwnm. .mme.mnm._w“no e
have been developed to incorporate the various phenomena appearing in special cases.

3.1 Submodular fiows

7. Edmonds, R. Giles (1977). A min-max relation for submodular functions on graphs.

. Diser. Math. 1, 185-204. ) .
x:%rm HM&& of submodular flows is perhaps the most convenient and flexible among

the several equivalent models (such as, independent flows, polymatroidal flows, kernel
systems, etc).

Successful efforts have been made to carry over the _Eos.J techniques of the n._mmmmnm,
network flows to submodular flows. There follows a selection of papers of this Mﬁwm
their titles already indicates the flow technique they have extended to submodulal

flows.

W. Cunningham, A. Frank (1985). A primal-dual algorithm for submodular flows
Math. Oper. Res. 10, 251-261.
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U. Zimmermann (1985). Augmenting circuit methods for submodular flow problems.
L. Lovész, A. Recski (eds.). Matroid Theory, North-Holland, Amsterdam.

m.w Fujishige (1987). An out-of-kilter method for submodular Sows. Diser. Appl. Math.
17, 3-16.

W. Cui, 8. Fujishige (1988). A primal algorithm for the submodular fiow problem with
minimum-mean cycle selection. J. Oper. Res. Soc. Japan 31, 431-441.

U. Zimmermann (1992}, Negative circuits for lows and submodular flows. Discr. Appl.
Math. 36, 179-189.

5.T. MeCormick, T.R. Ervolina (1993). Canceling most helpful total submodular cuts
for submodular flow. G. Rinaldi, L. Wolsey (eds.). Proc. of the $rd IPCO Conf., Erice,
CIACO, 343-353.

H.N. Gabow (1993). A framework for cost-scaling algorithms for submodular flow
problems. Proc. 84th Annual IEEE Symp. Found. Comput. Sci., 449-458.

8. Fujishige, H. Réck, U. Zimmermann (1989). A strongly polynomial algorithm for
minimum cost submodular flow problems. Math. Oper. Res. 14, 60-69.

H.N. Gabow (1995). Centroids, representations, and submodular flows. J. Algorithms
18, 586-628.

This paper presents & general technique to speed up several of the above algorithms.

3.2 Delta-matroids and submodular functions in two variables

LPA. Bouchet (1987). Greedy algorithm and symmetric matroids. Math. Program. 38
147-1589,
R. Chandrasekaran, S.N. Kabadi (1988). Pseudomatroids. Discr. Math. 71, 206-217.
Various possible applications led researchers to investigate structures that may be
associated with sub- or supermodular functions in two variables. A A-matroid is a
pair D = (5, F) where § is a finite ground-set and F is a family of subsets of S, called
feasible sets, satisfying the following symmetric exchange axiom: for Fi, Fy € F and
for x € FiAF;, there is an element y € F1AF; with Fy A{x,y} € F. (Here A denotes
the symmetric difference.) This was introduced independently, under different names,
in these two papers.

By now the name A-matroid seems to become the generally accepted one. It can be
shown that a A-matroid is a matroid (given by its bases) if and only if all the feasible
sets have the same cardinality. Dress and Havel introduced a slightly weaker notion,
called metroid

A. Bouchet, A. Dress, T. Havel (1992). A-matroids and metroids. Adv. Math. 91,
136-142,

It was pointed out that metroids are exactly those A-matroids for which the empty
set is feagible.

One important feature of A-matroids is that the greedy algorithm computes
correctly a maximum weight feasible set.
M. Nakamura (1988). A characterization of those polytopes in which the greedy
aigorithm works (abstract). Proc. 18th Ini. Symp. on Math. Program., Tokyo.
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S.N. Kabadi, R. Chandrasekaran (1990). On totally dual integral systems. Discr. Appl.
Math. 26, 87-104.

L. Qi (1988). Directed submodularity, ditroids, and directed submodular flows. Math.
Program. 42, 579-599.

The convex hull P of characteristic vectors of feasible sets has been described inde-
pendently in these three papers. Namely, P = {z : z(4) — z(B) < f(A,B), A,B C
S,AN B = 0} where f(A,B) := max{|{FNA| - |FnB|:F ¢ F). Function f
can be shown to be bisubmodular, that is, f{4,B) + f{A",B) > f{AN A, Bn
B) + f{Au A") — (BU B'),(BU B') - (AU A"). Actually, the linear system
z(A) — =(B) < f(A,B), A,B C §,An B = {} is totally dual integral whenever
f is a bisubmodular function.

A. Bouchet, W. Cunningham (1995). Delta-matroids, jump systems, and bisubmodular
polyhedra. STAM J. Discr. Math. 8, 17-32.
This paper presents more structural results on bisubmodular functions.

A. Frank, T. Jordén (1995). Minimal edge-coverings of pairs of sets. J. Combin. Theory
B, 65, 73-110. .
Another type of two-variable supermodular set-function is considered.

A non-negative integer-valued function p defined on the pairs of disjoint subsets of
S is said to be crossing bi-supermodular if p(X,Y) +p(X',Y') < p(X N X", Y UY"} +
p(X UX’, Y NY'} holds whenever p(X,Y),p(X",Y’) > 0, XN X" Y NY' # @. The
problem is to find an integer-valued function z > 0 defined on the ordered pairs (1, v)
(u,v € §) so that ¥ (z(u,v) : 4 € X,v € Y) 2 p(X,Y) holds for every X,V C 5 and
so that (3" z(u,v) : u,v € S) is as small as possible. The main result is a general min-
max theorem that implies a characterization on the minimum number of new edges to
be added to a given directed graph to make it k-node-connected or k-edge-connected.
Other special cases are an extension of a deep theorem of E. Gyéri on intervals, W,
Mader’s theorem on splitting off edges in directed graphs, and J. Edmonds’ theorem
on matroid partitions.

3.3 Valuated matroids

Valuated matroids were introduced by Dress and Wenzel. The idea is that the greedy
algorithm works not only for linear cost-functions but some more general ones, as well,
provided the cost function satisfies an exchange-type property.

A. Dress, W. Wenzel (1992). Valuated matroids. Adv. Math. 93, 214-250.

By a valuation w on a matroid Dress and Wenzel mean a function w : B — R on
the family of bases B so that for any two bases B, B’ and element u € B — B’, there
is an element v € B’ — B for which w(B) +w(B') < w(B—u+v)+w(B —v+v). A
matroid with a valuation is called a valuated matroid. Dress and Wenzel proved that
a suitable version of the greedy algorithm works for valuated matroids.

K. Murota (1996). Valuated matroid intersection I: optimality criteria. STAM J. Discr.
Math. 9, 545-561.
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W.%MWMQMM (1996). Valuated matroid intersection II: algorithms. STAM J. Discr. Math.
?Ewoﬁw showed that not only the greedy algorithm but the matroid intersection

algorithm (and theory) as well extends nicely to valuated matroids. Moreaver, Murota

made an important discovery. He realized that valuated matroids may be im.s.ma asa

tool combining ideas from matroid theory and non-linear programming.

K. Murota (1996). Convexity and Steinitz’s exchange property. Proc. 5th Int. Conf.

on Integer Program. and Comb. Optim., Vancouver.

3.4 Matroid parity

Humn.wm.ﬁm the most difficult optimization problem concerning matroids is the matroid
parity problem.

L. bo%mmnq M. Plummer (1986). Matching Theory, North-Holland, Amsterdam.
This book summarizes the early fundamental results on the subject.

H. vacﬂ. .g. Stallmann (1986). An augmenting path algorithm from the linear
matroid parity problem. Combinatorica 6, 123-150.
J. Orlin, J. VandeVate (1996). Solving the linear matroid parity problem as a sequence
of problems. Math. Program. to appear.

Ow& .& .Em main concerns is the algorithmic side of the matroid parity problem.
H.ogmm original polynomial-time algorithm for the (linear} matroid parity is extremely
complicated. Here are two simplified versions.

Gammoids, a special class of matroids, are defined on a node-set of a directed graph
G = (V, E), as follows. Let § be a specified subset of k nodes of a & and let B be the
family of k-element subsets T of V' for which there are k node-disjoint paths from S
to T'. Then it can be proved that B is the basis set of a matroid and the matroids and
submatroids arising this way are called gemmoids. (The smallest matroid that is not
a gammoid is the circuit matroid of Ky.)

Po Tong, E.L. Lawler, V.V. Vazirani (1984). Solving the weighted parity problem
for gammoids by reduction to graphic matching. W.R. Pulleyblank {ed.). Progress in
Combinatorial Optimizetion, Academic Press, New York, 363-374.

This paper does exactly what its title indicates.

_H..vﬁ.m is a very exciting probabilistic approach to solve algorithmically the matroid
_U.E._Q problem. The underlying idea is simple and perhaps best undersood in the spe-
cial case of deciding whether a bipartite graph G has a perfect matching. Assign a
matrix M to G with columns corresponding to one of the two colour-classes of & and
with rows corresponding to the other colour-class. Define entry ai; zero if v; and v,
are not incident and x;; if they are incident. Here the non-zero entries are 85&%8%
E&%mﬂ&mnﬂ indeterminates. It is not difficult to see that G has a perfect matching
if and only if the determinant of M is not the zero polynomial. It may not be easy
to answer this question algorithmically since the naive way to compute the determi-
nant may lead to far too many expansion terms. There is however another natural
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approach: substitute random integers for each indeterminate and compute the deter-
minant of the arising integer matrix. If this number is not zero, then the polyncmial
is not identically zero and hence the graph has a perfect matching. If this number is
zero, then we cannot be sure that the polynomial is identically zero because we just
may have hit a root of this polynomial. But intuitively the chance of such an event
is clearly small and it can actually be proved that the probability of hitting a root is
smaller than a fixed number & < 1. Therefore if we repeat the same procedure several
times and every time the resulting determinant is zero, then we can be sure, with
arbitrarily high probability, that the graph has no perfect matching,.

L. Lovész, (1979). On determinants, matchings and random algorithms. L. Budach
(ed.). Fundamentals of Comput. Th., Akademia Verlag, Berlin.

Of course, there are very efficient deterministic algorithm for bipartite matching but
the nice thing is that the probabilistic algorithm above can be extended to matroid
parity problems as was shown in this paper.

P.M. Camerini, G. Galbiati, F. Maffioli (1992). Random pseudo-polinomial algorithms
for exact matroid problems. J. Algorithms 13, 258-273.

This paper extends the idea to related topics. Among others, it describes a poly-
nomial time random algorithm to determine whether two matroids with a red and
blue coloured common ground-set have a common basis with exactly k red elements.
No polynomial-time deterministic algorithm is known even for the special case of this
problem when one wants to determine if a red-blue edge-coloured bipartite graph has
a perfect matching with exactly k red edges.

J.H. VandeVate (1992). Fractional matroid matchings. J. Comb. Theory B 5,5 133-

145.
J.H. VandeVate (1992). Structural properties of matroid matchings. Diser. Appl.

Math. 39, 69-85,
Some interesting structural results concerning the matroid parity problem can be

found in these works.

M.L. Furst, J.L. Gross, L.A. McGeogh (1988). Finding a minimum-genus graph
embedding. J. ACM 35, 523-534.
Matroid parity finds a nice application in graph embedding problems.

L. Nebesky (1983). A Note on Upper Embeddable Graphs. Crechslovak Math. Journal,
33, 3740

This remarkable paper is concerned with the co-graphic matroid parity problem and
finds a very neat characterization for graphs having a spanning tree T for which each
component arising from G by deleting the edges in T has an odd number of edges.

4 Minor, Decompositions, and Representations

Let A be a matrix with entries from an arbitrary field . The set § of columns of 4
forms a subset of a vector space over F and linear independence defines a matroid on



78 A. Frank

5. A fundamental question is to decide whether a given matroid can be represented
in such a form. Very often the answer relies on the notion of minors. For example, a
classic result of Tutte asserts that a matroid M is binary (i.e., M can be H.mvnmmmﬁ.&
over GF(2)) if and only if M does not include the uniform matroid Uy ; as a minor. As
I mentioned earlier, excellent recent books and survey papers are Bﬁ.FEm concerning
this area therefore here I list only a few papers to provide a flavour of the type of the-
orems. For example, Tutte characterized matroids which are representable over every
field (the so-called regular matroids) by proving that regular matroids are those not
containing Uy 2, the Fano matroid, and the dual Fano matroid.

>.g..m. Gerards (1989). A short proof of Tutte’s characterization of totally unimodular
matrices. Linear Algebra and its Appl. 114, 217-222.

The original proof is very difficuit but this paper turns Tutte’s result accessible for
everyone familiar with the basics of matroid theory.

J. Kahn, P.D. Seymour (1988}, On forbidden minors of GF(3), Proc. American Math.
Sec. 102, 437-440.

This includes a simple proof of a characterization for ternary matroids, a result
proved first by R. Reid (unpublished). Structural descriptions are often related to
connectivity properties.

R.E. Bixby (1974). l-marices and a characterization of binary matroids. Discr. Math.
8, 139-145,

"This work shows that a non-binary matroid not only includes a Uy z-minor, but
every element belongs to such a minor provided that the matroid is connected (i.e.
every two elements are contained in a circuit).

P.D. Seymour (1985). On minors of 3-connected matroids. Buropean J. Combinatorics
6, 375-382.

It is shown that mm M is 3-connected and not binary, then even every pair of elements
belong to a Uy 3-minor. As far as decomposition of matroids are concerned we mention
two »..E. reaching results. Tutte’s above-mentioned characterization of regular matroids
provides a certificate (namely the cccurrence of certain minors) to show that a certain
matroid is not regular.

Mow.mmmﬁaoﬁ {1980). Decomposition of regular matroids. J. Comb. Theory B 28
-359. .
) This paper v._,oi&mm a certificate to show that a matroid is regular. The certificate
is a way to build up the matroid from graphic and cographic matroids and from a
specific regular matroid on ten elements, where the building operations are the so
called 1-, 2- and 3-sums.

miw Cheng, K. Truemper (1986}. A decomposition of the matroids with the max-flow
min-cut property. Discr. Appl. Math. 15, 329-364.

Another important decomposition theorem desribes how to construct matroids with
the max-flow min-cut property.

Matroids and Submodular Functions 79

P.D. Seymour (1977). The matroids with the max-flow min-cut property. J. Comb.

Theory B 23, 185-222,
These matroids are characterized in terms of forbidden minors.

5 Applications to Networks, Scheduling, Game
Theory, and Allocation Problems

A. Frank (1992). On a theorem of Mader. Ann. Discr. Math. 101, 49-57.

One of the main application area of submodular and related functions concerns
connectivity of graphs. For example, skew-supermodular functions are used in this
paper to provide a relatively simple proof of a deep theorem of Mader on split-
ting of edges without decreasing the local edge-connectivity. (A set-function p is
called skew-supermodular if the following inequality holds for every pair of sets X, Y
p(X) +p(¥) < max(p(X NY)p(X UY), p(X = Y) +p(Y - X)).

D.P. Williamson, M.X. Goemans, M. Mihail, V.V. Vazirani (1995). A primal dual
algorithm for generalized Steiner network problems. Combinatorica 15, 435-454.

Here another class of submodular-type functions is used in & fundamental new tech-
nique of the primal-dual approximation metheds.

A. Frank, E. Tardos (1989). An application of submodular flows. Linear Algebra and
its Appl. 114/115, 329-348.

In this paper the minimum cost rooted connectivity augmentation problem is re-
duced to submodular fows.

H.N. Gabow (1991). A matroid approach to finding edge-connectivity and packing
arborescences. Proc. 29rd ACM Symp. Theory of Comput., 112-122.
H.N. Gabow, K.S. Manu (1995). Packing algorithms for arborescences (and spanning
trees) in capacitated graphs. E. Balas, J. Clausen (eds.). Integer Programming and
Combinatorial Optimization, Lecture Notes in Computer Science, 920 Springer, Berlin
388-402.
H.N. Gabow ({1991). Applications of a poset representation to edge connectivity and
graph rigidity. Proc. 92nd Annual IEEE Symp. Found. Comput. Sci., 812-820.
H.N. Gabow (1994). Efficient splitting off algorithms for graphs. Proc. 26th ACM
Symp. Theory of Comput., Montreal, 696-706.

These important works of H. Gabow concern algorithmic aspects of connectivity-
related problems.

L.A. Wolsey (1989). Submodularity and valid inequalities in capacitated fixed charged

networks. Oper. Res. Lett. 8, 115-124.
Another role of submodular functions is utilized here. The observation that the flow
values of certain fixed charged networks are submodular is used to derive valid in-

equalities.

H. Nagamochi, T. Ibaraki (1995). A faster edge splitting algorithm in multigraphs and
its application to the edge-connectivity augmentation problem. E. Balas, J. Clausen
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(eds.). Integer Programming and Combinatoriel Optimization, Lecture Notes in
Computer Science, 920 Springer, Berlin, 403-413.

H. Nagamochi, K. Nishima, T. Ibaraki {1995). Computing all small cuts in undirected
networks. D-Z.Du, X-S. Zhang (eds.}. Algorithms and Computation, Lecture Notes in
Computer Science 834, 190-198.

In connection with Queyranne’s algorithm for minimizing symmetric submodular
functions, I have already referred to a fundamental paper of Nagamochi and Ibaraki.
These works describe interesting extensions. The submodular technique again plays
an important role.

Submodular functions proved to be useful in the area of scheduling. See for example
the following two papers.
F. Blanchini, M. Queyranne, F. Rinaldi, W. Ukovich (1996). A feedback strategy for
periodic network flows. Networks 27, 25-34.
M. Queyranne, A.S. Schulz {1995). Scheduling unit jobs with compatible release dates
on parallel machines with nonstationary speed. E. Balas, J. Clausen (eds.). Integer
Programming ond Combinatorial Optimization, Lecture Notes in Computer Science,
920 Springer, Berlin, 307-320.

Ancther large and interesting topic of applications of submodular functions is the
area of resource allocations. Here I mention some of the basic results.
N. Katoh, T. Ibaraki, H. Mine (1985). An algorithm for the equipollent resource allo-
cation problem. Math. Oper. Res. 10, 44-53.
A. Federgruen, H. Gronevelt{1986). Optimal flows in networks with multiple sources
and sinks, with applications to oil and gas lease investment programs. Oper. Res. 34,
218-225.
A. Federgruen, H. Gronevelt (1986). The greedy procedure for resource allocation
problems: Necessary and sufficient conditions for optimality. Oper. Res. 34, 309-918.
8. Fujishige, N. Katoh, T. Ichimori (1988). The fair resource allocation problem. Math.
Oper. Res. 13, 164-173.

Finally, let me draw attention to the applicability of supermodular functions in
game theory. This connection was already discovered in
L.S. Shapley (1971). Cores of convex games. Int. J. Game Theory 1, 11-26.

T. Ichiishi (1981). Super-modularity: Applications to convex games and to the greedy
algorithm for LP. J. Economic Theory 25, 283-286.
This paper analyzes the relationship of greedy algorithms and convex games.

H. Kanekom, M. Fushimi {1986). A polymatroid associated with convex games. Diser.
Appl. Math. 14, 33-45.
This work makes use of the theory of principal partition of polymatroids.

M. Iri (1979). A review of recent work in Japan on principal partitions of matroids
and their applications. Annals of the New York Academy of Sciences 319, 306-319.

Principal partitions form a basic tool for describing the fine structure of submodular
functions.



